• Previous Article
    Local well-posedness of solutions to the boundary layer equations for compressible two-fluid flow
  • ERA Home
  • This Issue
  • Next Article
    A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation
doi: 10.3934/era.2021083
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Controllability of nonlinear fractional evolution systems in Banach spaces: A survey

School of Mathematics and Statistics, Shandong Normal University, Jinan, Shandong 250014, China

* Corresponding author: Yansheng Liu

Received  June 2021 Revised  August 2021 Early access October 2021

This paper presents a survey for some recent research on the controllability of nonlinear fractional evolution systems (FESs) in Banach spaces. The prime focus is exact controllability and approximate controllability of several types of FESs, which include the basic systems with classical initial and nonlocal conditions, FESs with time delay or impulsive effect. In addition, controllability results via resolvent operator are reviewed in detail. At last, the conclusions of this work and the research prospect are presented, which provides a reference for further study.

Citation: Daliang Zhao, Yansheng Liu. Controllability of nonlinear fractional evolution systems in Banach spaces: A survey. Electronic Research Archive, doi: 10.3934/era.2021083
References:
[1]

M. AlipourM. A. Vali and A. H. Borzabadi, A hybrid parametrization approach for a class of nonlinear optimal control problems, Numer. Algebra Control Optim., 9 (2019), 493-506.  doi: 10.3934/naco.2019037.  Google Scholar

[2]

O. A. ArinoT. A. Burton and J. R. Haddock, Periodic solutions to functional-differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 101 (1985), 253-271.  doi: 10.1017/S0308210500020813.  Google Scholar

[3]

K. Aruna Sakthi and A. Vinodkumar, Stabilization on input time-varying delay for linear switched systems with truncated predictor control, Numer. Algebra Control Optim., 10 (2020), 237-247.  doi: 10.3934/naco.2019050.  Google Scholar

[4]

K. Balachandran and J. P. Dauer, Controllability of nonlinear systems via fixed-point theorems, J. Optim. Theory Appl., 53 (1987), 345-352.  doi: 10.1007/BF00938943.  Google Scholar

[5]

J. T. BettsS. L. Campbell and C. Digirolamo, Initial guess sensitivity in computational optimal control problems, Numer. Algebra Control Optim., 10 (2020), 39-43.  doi: 10.3934/naco.2019031.  Google Scholar

[6]

C. Bucur, Local density of Caputo-stationary functions in the space of smooth functions, ESAIM Control Optim. Calc. Var., 23 (2017), 1361-1380.  doi: 10.1051/cocv/2016056.  Google Scholar

[7]

Y.-K. ChangA. Pereira and R. Ponce, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators, Fract. Calc. Appl. Anal., 20 (2017), 963-987.  doi: 10.1515/fca-2017-0050.  Google Scholar

[8]

J. Chen, X. Li and D. Wang, Asymptotic stability and exponential stability of impulsive delayed Hopfield neural networks, Abstr. Appl. Anal., 2013 (2013), 10pp. doi: 10.1155/2013/638496.  Google Scholar

[9]

L. ChenM. Cao and C. Li, Bearing rigidity and formation stabilization for multiple rigid bodies in $SE(3)$, Numer. Algebra Control Optim., 9 (2019), 257-267.  doi: 10.3934/naco.2019017.  Google Scholar

[10]

H. Cheng and R. Yuan, Stability of traveling wave fronts for nonlocal diffusion equation with delayed nonlocal response, Taiwanese J. Math., 20 (2016), 801-822.  doi: 10.11650/tjm.20.2016.6284.  Google Scholar

[11]

H. Cheng and R. Yuan, The stability of the equilibria of the Allen-Cahn equation with fractional diffusion, Appl. Anal., 98 (2019), 600-610.  doi: 10.1080/00036811.2017.1399360.  Google Scholar

[12]

J. Danane and K. Allali, Optimal control of an HIV model with CTL cells and latently infected cells, Numer. Algebra Control Optim., 10 (2020), 207-225.  doi: 10.3934/naco.2019048.  Google Scholar

[13]

A. Debbouche and D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., 62 (2011), 1442-1450.  doi: 10.1016/j.camwa.2011.03.075.  Google Scholar

[14]

X. DingH. LiQ. YangY. ZhouA. Alsaedi and F. E. Alsaadi, Stochastic stability and stabilization of $n$-person random evolutionary Boolean games, Appl. Math. Comput., 306 (2017), 1-12.  doi: 10.1016/j.amc.2017.02.020.  Google Scholar

[15]

J. Du, W. Jiang, D. Pang and A. U. K. Niazi, Controllability for a new class of fractional neutral integro-differential evolution equations with infinite delay and nonlocal conditions, Adv. Difference Equ., 2017 (2017), 22pp. doi: 10.1186/s13662-017-1182-6.  Google Scholar

[16]

M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 14 (2002), 433-440.  doi: 10.1016/S0960-0779(01)00208-9.  Google Scholar

[17]

F.-D. GeH.-C. Zhou and C.-H. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Appl. Math. Comput., 275 (2016), 107-120.  doi: 10.1016/j.amc.2015.11.056.  Google Scholar

[18]

R. Ghanem and B. Zireg, Numerical solution of bilateral obstacle optimal control problem, where the controls and the obstacles coincide, Numer. Algebra Control Optim., 10 (2020), 275-300.  doi: 10.3934/naco.2020002.  Google Scholar

[19]

E. Hernández and D. O'Regan, Controllability of Volterra-Fredholm type systems in Banach spaces, J. Franklin. Inst., 346 (2009), 95-101.  doi: 10.1016/j.jfranklin.2008.08.001.  Google Scholar

[20]

E. HernándezD. O'Regan and K. Balachandran, On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Anal., 73 (2010), 3462-3471.  doi: 10.1016/j.na.2010.07.035.  Google Scholar

[21]

Y. Hino, S. Murakami and T. Naito, Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.  Google Scholar

[22]

J.-M. Jeong and H.-H. Roh, Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl., 321 (2006), 961-975.  doi: 10.1016/j.jmaa.2005.09.005.  Google Scholar

[23]

S. Ji, Approximate controllability of semilinear nonlocal fractional differential systems via an approximating method, Appl. Math. Comput., 236 (2014), 43-53.  doi: 10.1016/j.amc.2014.03.027.  Google Scholar

[24]

J. Jia and H. Wang, A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes, Comput. Math. Appl., 78 (2019), 1345-1356.  doi: 10.1016/j.camwa.2019.04.003.  Google Scholar

[25]

J. JiaH. Wang and X. Zheng, A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions, Appl. Numer. Math., 163 (2021), 15-29.  doi: 10.1016/j.apnum.2021.01.001.  Google Scholar

[26]

R. Joice Nirmala and K. Balachandran, The controllability of nonlinear implicit fractional delay dynamical systems, Int. J. Appl. Math. Comput. Sci., 27 (2017), 501-513.  doi: 10.1515/amcs-2017-0035.  Google Scholar

[27]

R. Joice NirmalaK. BalachandranL. Rodríguez-Germa and J. J. Trujillo, Controllability of nonlinear fractional delay dynamical systems, Rep. Math. Phys., 77 (2016), 87-104.  doi: 10.1016/S0034-4877(16)30007-6.  Google Scholar

[28]

K. Kavitha, V. Vijayakumar and R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Solitons Fractals, 139 (2020), 12pp. doi: 10.1016/j.chaos.2020.110035.  Google Scholar

[29]

A. KheirabadiA. M. Vaziri and S. Effati, Linear optimal control of time delay systems via Hermite wavelet, Numer. Algebra Control Optim., 10 (2020), 143-156.  doi: 10.3934/naco.2019044.  Google Scholar

[30]

A. KheirabadiA. M. Vaziri and S. Effati, Solving optimal control problem using Hermite wavelet, Numer. Algebra Control Optim., 9 (2019), 101-112.  doi: 10.3934/naco.2019008.  Google Scholar

[31]

A. Kumar and D. N. Pandey, Controllability results for non densely defined impulsive fractional differential equations in abstract space, Differ. Equ. Dyn. Syst., 29 (2021), 227-237.  doi: 10.1007/s12591-019-00471-1.  Google Scholar

[32]

S. Kumar and N. Sukavanam, Approximate controllability of fractional order semilinear systems with bounded delay, J. Differential Equations, 252 (2012), 6163-6174.  doi: 10.1016/j.jde.2012.02.014.  Google Scholar

[33]

H. Li and X. Ding, A control Lyapunov function approach to feedback stabilization of logical control networks, SIAM J. Control Optim., 57 (2019), 810-831.  doi: 10.1137/18M1170443.  Google Scholar

[34]

H. Li and Y. Wang, Controllability analysis and control design for switched Boolean networks with state and input constraints, SIAM J. Control Optim., 53 (2015), 2955-2979.  doi: 10.1137/120902331.  Google Scholar

[35]

H. LiX. Wu and J. Zhang, Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space, East Asian J. Appl. Math., 7 (2017), 439-454.  doi: 10.4208/eajam.031116.080317a.  Google Scholar

[36]

H. Li and Y. Wu, Artificial boundary conditions for nonlinear time fractional Burgers' equation on unbounded domains, Appl. Math. Lett., 120 (2021), 8pp. doi: 10.1016/j.aml.2021.107277.  Google Scholar

[37]

H. LiX. Xu and X. Ding, Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect, Appl. Math. Comput., 347 (2019), 557-565.  doi: 10.1016/j.amc.2018.11.018.  Google Scholar

[38]

H. LiY. Zheng and F. E. Alsaadi, Algebraic formulation and topological structure of Boolean networks with state-dependent delay, J. Comput. Appl. Math., 350 (2019), 87-97.  doi: 10.1016/j.cam.2018.10.003.  Google Scholar

[39]

K. LiJ. Peng and J. Gao, Controllability of nonlocal fractional differential systems of order $\alpha\in (1, 2]$ in Banach spaces, Rep. Math. Phys., 71 (2013), 33-43.  doi: 10.1016/S0034-4877(13)60020-8.  Google Scholar

[40]

L. Li, Z. Jiang and Z. Yin, Compact finite-difference method for 2D time-fractional convection-diffusion equation of groundwater pollution problems, Comput. Appl. Math., 39 (2020), 34pp. doi: 10.1007/s40314-020-01169-9.  Google Scholar

[41]

P. Li, X. Li and J. Cao, Input-to-state stability of nonlinear switched systems via Lyapunov method involving indefinite derivative, Complexity, 2018 (2018). doi: 10.1155/2018/8701219.  Google Scholar

[42]

X. Li, Further analysis on uniform stability of impulsive infinite delay differential equations, Appl. Math. Lett., 25 (2012), 133-137.  doi: 10.1016/j.aml.2011.08.001.  Google Scholar

[43]

X. LiH. LiY. Li and X. Yang, Function perturbation impact on stability in distribution of probabilistic Boolean networks, Math. Comput. Simulation, 177 (2020), 1-12.  doi: 10.1016/j.matcom.2020.04.008.  Google Scholar

[44]

X. Li, Z. Liu and C. C. Tisdell, Approximate controllability of fractional control systems with time delay using the sequence method, Electron. J. Differential Equations, 2017 (2017), 11pp.  Google Scholar

[45]

X. LiD. O'Regan and H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80 (2015), 85-99.  doi: 10.1093/imamat/hxt027.  Google Scholar

[46]

X. LiJ. ShenH. Akca and R. Rakkiyappan, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250 (2015), 798-804.  doi: 10.1016/j.amc.2014.10.113.  Google Scholar

[47]

Y. LiR. ZhangY. Zhang and B. Yang, Sliding mode control for uncertain T-S fuzzy systems with input and state delays, Numer. Algebra Control Optim., 10 (2020), 345-354.  doi: 10.3934/naco.2020006.  Google Scholar

[48]

J. Liang and H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Appl. Math. Comput., 254 (2015), 20-29.  doi: 10.1016/j.amc.2014.12.145.  Google Scholar

[49]

S. LiangG. ZhaoH. Li and X. Ding, Structural stability analysis of gene regulatory networks modeled by Boolean networks, Math. Methods Appl. Sci., 42 (2019), 2221-2230.  doi: 10.1002/mma.5488.  Google Scholar

[50]

L. Lin, Y. Liu and D. Zhao, Study on implicit-type fractional coupled system with integral boundary conditions, Mathematics, 9 (2021). doi: 10.3390/math9040300.  Google Scholar

[51]

B. Liu and Y. Liu, Positive solutions of a two-point boundary value problem for singular fractional differential equations in Banach space, J. Funct. Spaces Appl., 2013 (2013), 9pp. doi: 10.1155/2013/585639.  Google Scholar

[52]

L. LiuS. LuC. HanC. Li and Z. Feng, Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay, Numer. Algebra Control Optim., 10 (2020), 367-379.  doi: 10.3934/naco.2020008.  Google Scholar

[53]

M. Liu, S. Li, X. Li, L. Jin, C. Yi and Z. Huang, Intelligent controllers for multirobot competitive and dynamic tracking, Complexity, 2018 (2018). doi: 10.1155/2018/4573631.  Google Scholar

[54]

X. LiuZ. Liu and M. Bin, Approximate controllability of impulsive fractional neutral evolution equations with Riemann-Liouville fractional derivatives, J. Comput. Anal. Appl., 17 (2014), 468-485.   Google Scholar

[55]

Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340-353.  doi: 10.22436/jnsa.008.04.07.  Google Scholar

[56]

Y. Liu, Positive solutions using bifurcation techniques for boundary value problems of fractional differential equations, Abstr. Appl. Anal., 2013 (2013), 7pp. doi: 10.1155/2013/162418.  Google Scholar

[57]

Y. Liu and D. O'Regan, Controllability of impulsive functional differential systems with nonlocal conditions, Electron. J. Differential Equations, 2013 (2013), 10pp.  Google Scholar

[58]

Y. Liu and H. Yu, Bifurcation of positive solutions for a class of boundary value problems of fractional differential inclusions, Abstr. Appl. Anal., 2013 (2013), 8pp. doi: 10.1155/2013/942831.  Google Scholar

[59]

Y. LiuY. ZhengH. LiF. E. Alsaadi and B. Ahmad, Control design for output tracking of delayed Boolean control networks, J. Comput. Appl. Math., 327 (2018), 188-195.  doi: 10.1016/j.cam.2017.06.016.  Google Scholar

[60]

Z. Liu and M. Bin, Approximate controllability of impulsive Riemann-Liouville fractional equations in Banach spaces, J. Integral Equations Appl., 26 (2014), 527-551.  doi: 10.1216/JIE-2014-26-4-527.  Google Scholar

[61]

Z. LiuX. Li and J. Sun, Controllability of nonlinear fractional impulsive evolution systems, J. Integral Equations Appl., 25 (2013), 395-406.  doi: 10.1216/JIE-2013-25-3-395.  Google Scholar

[62]

X. Lv, X. Li, J. Cao and P. Duan, Exponential synchronization of neural networks via feedback control in complex environment, Complexity, 2018 (2018). doi: 10.1155/2018/4352714.  Google Scholar

[63]

T. Ma and B. Yan, The multiplicity solutions for nonlinear fractional differential equations of Riemann-Liouville type, Fract. Calc. Appl. Anal., 21 (2018), 801-818.  doi: 10.1515/fca-2018-0042.  Google Scholar

[64]

N. I. Mahmudov, Partial-approximate controllability of nonlocal fractional evolution equations via approximating method, Appl. Math. Comput., 334 (2018), 227-238.  doi: 10.1016/j.amc.2018.03.116.  Google Scholar

[65]

J. Mao and D. Zhao, Multiple positive solutions for nonlinear fractional differential equations with integral boundary value conditions and a parameter, J. Funct. Spaces, 2019 (2019), 11pp. doi: 10.1155/2019/2787569.  Google Scholar

[66]

X.-Y. MengY.-Q. Wu and J. Li, Bifurcation analysis of a singular nutrient-plankton-fish model with taxation, protected zone and multiple delays, Numer. Algebra Control Optim., 10 (2020), 391-423.  doi: 10.3934/naco.2020010.  Google Scholar

[67]

G. M. Mophou, Existence and uniqueness of mild solution to impulsive fractional differential equations, Nonlinear Anal., 72 (2010), 1604-1615.  doi: 10.1016/j.na.2009.08.046.  Google Scholar

[68]

P. Muthukumar and K. Thiagu, Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order $1<q<2$ with infinite delay and Poisson jumps, J. Dyn. Control Syst., 23 (2017), 213-235.  doi: 10.1007/s10883-015-9309-0.  Google Scholar

[69]

K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 25 (1987), 715-722.  doi: 10.1137/0325040.  Google Scholar

[70]

N. NajibN. BachokN. M. Arifin and F. M. Ali, Stability analysis of stagnation point flow in nanofluid over stretching/shrinking sheet with slip effect using Buongiorno's model, Numer. Algebra Control Optim., 9 (2019), 423-431.  doi: 10.3934/naco.2019041.  Google Scholar

[71]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[72]

D. Peng, X. Li, R. Rakkiyappan and Y. Ding, Stabilization of stochastic delayed systems: Event-triggered impulsive control, Appl. Math. Comput., 401 (2021), 12pp. doi: 10.1016/j.amc.2021.126054.  Google Scholar

[73] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[74]

J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87, Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[75]

T. Qi, Y. Liu and Y. Cui, Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions, J. Funct. Spaces, 2017 (2017), 9pp. doi: 10.1155/2017/6703860.  Google Scholar

[76]

T. QiY. Liu and Y. Zou, Existence result for a class of coupled fractional differential systems with integral boundary value conditions, J. Nonlinear Sci. Appl., 10 (2017), 4034-4045.  doi: 10.22436/jnsa.010.07.52.  Google Scholar

[77]

R. QianR. Hu and Y.-P. Fang, Local smooth representation of solution sets in parametric linear fractional programming problems, Numer. Algebra Control Optim., 9 (2019), 45-52.  doi: 10.3934/naco.2019004.  Google Scholar

[78]

J. QiaoL. Yang and J. Yao, Passive control for a class of nonlinear systems by using the technique of adding a power integrator, Numer. Algebra Control Optim., 10 (2020), 381-389.  doi: 10.3934/naco.2020009.  Google Scholar

[79]

H. Qin, Z. Gu, Y. Fu and T. Li, Existence of mild solutions and controllability of fractional impulsive integrodifferential systems with nonlocal conditions, J. Funct. Spaces, 2017 (2017), 11pp. doi: 10.1155/2017/6979571.  Google Scholar

[80]

H. Qin, J. Liu and X. Zuo, Controllability problem for fractional integrodifferential evolution systems of mixed type with the measure of noncompactness, J. Inequal. Appl., 2014 (2014), 15pp. doi: 10.1186/1029-242X-2014-292.  Google Scholar

[81]

H. Qin, X. Zuo and J. Liu, Existence and controllability results for fractional impulsive integrodifferential systems in Banach spaces, Abstr. Appl. Anal., 2013 (2013), 12pp. doi: 10.1155/2013/295837.  Google Scholar

[82]

M. M. Raja, V. Vijayakumar, R. Udhayakumar and Y. Zhou, A new approach on the approximate controllability of fractional differential evolution equations of order $1<r<2$ in Hilbert spaces, Chaos Solitons Fractals, 141 (2020), 10pp. doi: 10.1016/j.chaos.2020.110310.  Google Scholar

[83]

R. SakthivelR. GaneshY. Ren and S. M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3498-3508.  doi: 10.1016/j.cnsns.2013.05.015.  Google Scholar

[84]

R. SakthivelY. Ren and N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451-1459.  doi: 10.1016/j.camwa.2011.04.040.  Google Scholar

[85]

R. SakthivelS. Suganya and S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 63 (2012), 660-668.  doi: 10.1016/j.camwa.2011.11.024.  Google Scholar

[86]

T. Sathiyaraj, M. Fečkan and J. Wang, Null controllability results for stochastic delay systems with delayed perturbation of matrices, Chaos Solitons Fractals, 138 (2020), 11pp. doi: 10.1016/j.chaos.2020.109927.  Google Scholar

[87]

X.-B. Shu and Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465-476.  doi: 10.1016/j.amc.2015.10.020.  Google Scholar

[88]

A. Shukla and R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65 (2021), 861-875.  doi: 10.1007/s12190-020-01418-4.  Google Scholar

[89]

A. ShuklaN. Sukavanam and D. N. Pandey, Approximate controllability of semilinear fractional control systems of order $\alpha\in(1, 2]$ with infinite delay, Mediterr. J. Math., 13 (2016), 2539-2550.  doi: 10.1007/s00009-015-0638-8.  Google Scholar

[90]

A. ShuklaN. Sukavanam and D. N. Pandey, Approximate controllability of semilinear system with state delay using sequence method, J. Franklin Inst., 352 (2015), 5380-5392.  doi: 10.1016/j.jfranklin.2015.08.019.  Google Scholar

[91]

N. Sukavanam, Approximate controllability of semilinear control system with growing nonlinearity, in Mathematical Theory of Control, Lecture Notes in Pure and Appl. Math., 142, Dekker, New York, 1993,353–357.  Google Scholar

[92]

Y.-F. SunZ. Zeng and J. Song, Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation, Numer. Algebra Control Optim., 10 (2020), 157-164.  doi: 10.3934/naco.2019045.  Google Scholar

[93]

Z. Sun and T. Sugie, Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems, Numer. Algebra Control Optim., 9 (2019), 297-318.  doi: 10.3934/naco.2019020.  Google Scholar

[94]

I. Tarnove, A controllability problem for nonlinear systems, in Mathematical Theory of Control, Academic Press, New York, 1967, 170-179.  Google Scholar

[95]

Y. Tian, Some results on the eigenvalue problem for a fractional elliptic equation, Bound. Value. Probl., 2019 (2019), 11pp. doi: 10.1186/s13661-019-1127-y.  Google Scholar

[96]

Y. Tian and S. Zhao, Existence of solutions for perturbed fractional equations with two competing weighted nonlinear terms, Bound. Value. Probl., 2018 (2018), 16pp. doi: 10.1186/s13661-018-1074-z.  Google Scholar

[97]

C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar., 32 (1978), 75-96.  doi: 10.1007/BF01902205.  Google Scholar

[98]

R. Triggiani, On the lack of exact controllability for mild solutions in Banach spaces, J. Math. Anal. Appl., 50 (1975), 438-446.  doi: 10.1016/0022-247X(75)90033-5.  Google Scholar

[99]

F. Wang, Z. Zhang and Z. Zhou, A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations, J. Comput. Appl. Math., 386 (2021), 16pp. doi: 10.1016/j.cam.2020.113233.  Google Scholar

[100]

J. WangZ. Fan and Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces, J. Optim. Theory Appl., 154 (2012), 292-302.  doi: 10.1007/s10957-012-9999-3.  Google Scholar

[101]

J. Wang and Y. Zhou, Complete controllability of fractional evolution systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4346-4355.  doi: 10.1016/j.cnsns.2012.02.029.  Google Scholar

[102]

Y. Wang, Y. Liu and Y. Cui, Infinitely many solutions for impulsive fractional boundary value problem with $p$-Laplacian, Bound. Value Probl., 2018 (2018), 16pp. doi: 10.1186/s13661-018-1012-0.  Google Scholar

[103]

Y. Wang, Y. Liu and Y. Cui, Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations, Bound. Value Probl., 2018 (2018), 21pp. doi: 10.1186/s13661-018-1114-8.  Google Scholar

[104]

Y. Wang, Y. Liu and Y. Cui, Multiple solutions for a nonlinear fractional boundary value problem via critical point theory, J. Funct. Spaces, 2017 (2017), 8pp. doi: 10.1155/2017/8548975.  Google Scholar

[105]

H.-Z. WeiX. Zuo and C.-R. Chen, Unified vector quasiequilibrium problems via improvement sets and nonlinear scalarization with stability analysis, Numer. Algebra Control Optim., 10 (2020), 107-125.  doi: 10.3934/naco.2019036.  Google Scholar

[106]

T. WeiX. Xie and X. Li, Input-to-state stability of delayed reaction-diffusion neural networks with multiple impulses, AIMS Math., 6 (2021), 5786-5800.  doi: 10.3934/math.2021342.  Google Scholar

[107]

X. XuH. LiY. Li and F. E. Alsaadi, Output tracking control of Boolean control networks with impulsive effects, Math. Methods Appl. Sci., 41 (2018), 1554-1564.  doi: 10.1002/mma.4685.  Google Scholar

[108]

X. XuY. LiuH. Li and F. E. Alsaadi, Robust set stabilization of Boolean control networks with impulsive effects, Nonlinear Anal. Model. Control, 23 (2018), 553-567.  doi: 10.15388/NA.2018.4.6.  Google Scholar

[109]

D. YangX. Li and J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal. Hybrid Syst., 32 (2019), 294-305.  doi: 10.1016/j.nahs.2019.01.006.  Google Scholar

[110]

D. YangX. LiJ. Shen and Z. Zhou, State-dependent switching control of delayed switched systems with stable and unstable modes, Math. Methods Appl. Sci., 41 (2018), 6968-6983.  doi: 10.1002/mma.5209.  Google Scholar

[111]

H. Yang and Y. Zhao, Controllability of fractional evolution systems of Sobolev type via resolvent operators, Bound. Value Probl., 2020 (2020), 13pp. doi: 10.1186/s13661-020-01417-1.  Google Scholar

[112]

Q. Yang, H. Li and Y. Liu, Pinning control design for feedback stabilization of constrained Boolean control networks, Adv. Difference Equ., 2016 (2016), 16pp. doi: 10.1186/s13662-016-0909-0.  Google Scholar

[113]

X. YangX. LiQ. Xi and P. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495-1515.  doi: 10.3934/mbe.2018069.  Google Scholar

[114]

A. ZareM. Keyanpour and M. Salahi, On fractional quadratic optimization problem with two quadratic constraints, Numer. Algebra Control Optim., 10 (2020), 301-315.  doi: 10.3934/naco.2020003.  Google Scholar

[115]

D. Zhang and Y. Liang, Existence and controllability of fractional evolution equation with sectorial operator and impulse, Adv. Difference Equ., 2018 (2018), 12pp. doi: 10.1186/s13662-018-1664-1.  Google Scholar

[116]

L. Zhang and Z. Zhou, Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation, Appl. Numer. Math., 143 (2019), 247-262.  doi: 10.1016/j.apnum.2019.04.003.  Google Scholar

[117]

X. Zhang, C. Zhu and C. Yuan, Approximate controllability of impulsive fractional stochastic differential equations with state-dependent delay, Adv. Difference Equ., 2015 (2015), 12pp. doi: 10.1186/s13662-015-0412-z.  Google Scholar

[118]

D. Zhao, New results on controllability for a class of fractional integrodifferential dynamical systems with delay in Banach spaces, Fractal Fract., 5 (2021), 1-18.  doi: 10.3390/fractalfract5030089.  Google Scholar

[119]

D. Zhao and Y. Liu, Eigenvalues of a class of singular boundary value problems of impulsive differential equations in Banach spaces, J. Funct. Spaces, 2014 (2014), 12pp. doi: 10.1155/2014/720494.  Google Scholar

[120]

D. Zhao and Y. Liu, Multiple positive solutions for nonlinear fractional boundary value problems, The Scientific World Journal, 2013 (2013). doi: 10.1155/2013/473828.  Google Scholar

[121]

D. Zhao and Y. Liu, Positive solutions for a class of fractional differential coupled system with integral boundary value conditions, J. Nonlinear Sci. Appl., 9 (2016), 2922-2942.  doi: 10.22436/jnsa.009.05.86.  Google Scholar

[122]

D. Zhao and Y. Liu, Twin solutions to semipositone boundary value problems for fractional differential equations with coupled integral boundary conditions, J. Nonlinear Sci. Appl., 10 (2017), 3544-3565.  doi: 10.22436/jnsa.010.07.16.  Google Scholar

[123]

D. ZhaoY. Liu and X. Li, Controllability for a class of semilinear fractional evolution systems via resolvent operators, Commun. Pur. Appl. Anal., 18 (2019), 455-478.  doi: 10.3934/cpaa.2019023.  Google Scholar

[124]

D. Zhao and J. Mao, New controllability results of fractional nonlocal semilinear evolution systems with finite delay, Complexity, 2020 (2020). doi: 10.1155/2020/7652648.  Google Scholar

[125]

D. Zhao and J. Mao, Positive solutions for a class of nonlinear singular fractional differential systems with Riemann-Stieltjes coupled integral boundary value conditions, Symmetry, 13 (2021), 1-19.  doi: 10.3390/sym13010107.  Google Scholar

[126]

G. ZhaoS. Liang and H. Li, Stability analysis of activation-inhibition Boolean networks with stochastic function structures, Math. Methods Appl. Sci., 43 (2020), 8694-8705.  doi: 10.1002/mma.6529.  Google Scholar

[127]

Y. Zhao, X. Li and J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 10pp. doi: 10.1016/j.amc.2020.125467.  Google Scholar

[128]

H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J. Control Optim., 22 (1983), 551-565.  doi: 10.1137/0321033.  Google Scholar

[129]

Y. Zhou and J. W. He, New results on controllability of fractional evolution systems with order $\alpha\in (1, 2)$, Evol. Equ. Control Theory, 10 (2021), 491-509.  doi: 10.3934/eect.2020077.  Google Scholar

[130]

Z. Zhou and W. Gong, Finite element approximation of optimal control problems governed by time fractional diffusion equation, Comput. Math. Appl., 71 (2016), 301-318.  doi: 10.1016/j.camwa.2015.11.014.  Google Scholar

[131]

Z. J. Zhou and N. N. Yan, A survey of numerical methods for convection-diffusion optimal control problems, J. Numer. Math., 22 (2014), 61-85.  doi: 10.1515/jnum-2014-0003.  Google Scholar

show all references

References:
[1]

M. AlipourM. A. Vali and A. H. Borzabadi, A hybrid parametrization approach for a class of nonlinear optimal control problems, Numer. Algebra Control Optim., 9 (2019), 493-506.  doi: 10.3934/naco.2019037.  Google Scholar

[2]

O. A. ArinoT. A. Burton and J. R. Haddock, Periodic solutions to functional-differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 101 (1985), 253-271.  doi: 10.1017/S0308210500020813.  Google Scholar

[3]

K. Aruna Sakthi and A. Vinodkumar, Stabilization on input time-varying delay for linear switched systems with truncated predictor control, Numer. Algebra Control Optim., 10 (2020), 237-247.  doi: 10.3934/naco.2019050.  Google Scholar

[4]

K. Balachandran and J. P. Dauer, Controllability of nonlinear systems via fixed-point theorems, J. Optim. Theory Appl., 53 (1987), 345-352.  doi: 10.1007/BF00938943.  Google Scholar

[5]

J. T. BettsS. L. Campbell and C. Digirolamo, Initial guess sensitivity in computational optimal control problems, Numer. Algebra Control Optim., 10 (2020), 39-43.  doi: 10.3934/naco.2019031.  Google Scholar

[6]

C. Bucur, Local density of Caputo-stationary functions in the space of smooth functions, ESAIM Control Optim. Calc. Var., 23 (2017), 1361-1380.  doi: 10.1051/cocv/2016056.  Google Scholar

[7]

Y.-K. ChangA. Pereira and R. Ponce, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators, Fract. Calc. Appl. Anal., 20 (2017), 963-987.  doi: 10.1515/fca-2017-0050.  Google Scholar

[8]

J. Chen, X. Li and D. Wang, Asymptotic stability and exponential stability of impulsive delayed Hopfield neural networks, Abstr. Appl. Anal., 2013 (2013), 10pp. doi: 10.1155/2013/638496.  Google Scholar

[9]

L. ChenM. Cao and C. Li, Bearing rigidity and formation stabilization for multiple rigid bodies in $SE(3)$, Numer. Algebra Control Optim., 9 (2019), 257-267.  doi: 10.3934/naco.2019017.  Google Scholar

[10]

H. Cheng and R. Yuan, Stability of traveling wave fronts for nonlocal diffusion equation with delayed nonlocal response, Taiwanese J. Math., 20 (2016), 801-822.  doi: 10.11650/tjm.20.2016.6284.  Google Scholar

[11]

H. Cheng and R. Yuan, The stability of the equilibria of the Allen-Cahn equation with fractional diffusion, Appl. Anal., 98 (2019), 600-610.  doi: 10.1080/00036811.2017.1399360.  Google Scholar

[12]

J. Danane and K. Allali, Optimal control of an HIV model with CTL cells and latently infected cells, Numer. Algebra Control Optim., 10 (2020), 207-225.  doi: 10.3934/naco.2019048.  Google Scholar

[13]

A. Debbouche and D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., 62 (2011), 1442-1450.  doi: 10.1016/j.camwa.2011.03.075.  Google Scholar

[14]

X. DingH. LiQ. YangY. ZhouA. Alsaedi and F. E. Alsaadi, Stochastic stability and stabilization of $n$-person random evolutionary Boolean games, Appl. Math. Comput., 306 (2017), 1-12.  doi: 10.1016/j.amc.2017.02.020.  Google Scholar

[15]

J. Du, W. Jiang, D. Pang and A. U. K. Niazi, Controllability for a new class of fractional neutral integro-differential evolution equations with infinite delay and nonlocal conditions, Adv. Difference Equ., 2017 (2017), 22pp. doi: 10.1186/s13662-017-1182-6.  Google Scholar

[16]

M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 14 (2002), 433-440.  doi: 10.1016/S0960-0779(01)00208-9.  Google Scholar

[17]

F.-D. GeH.-C. Zhou and C.-H. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Appl. Math. Comput., 275 (2016), 107-120.  doi: 10.1016/j.amc.2015.11.056.  Google Scholar

[18]

R. Ghanem and B. Zireg, Numerical solution of bilateral obstacle optimal control problem, where the controls and the obstacles coincide, Numer. Algebra Control Optim., 10 (2020), 275-300.  doi: 10.3934/naco.2020002.  Google Scholar

[19]

E. Hernández and D. O'Regan, Controllability of Volterra-Fredholm type systems in Banach spaces, J. Franklin. Inst., 346 (2009), 95-101.  doi: 10.1016/j.jfranklin.2008.08.001.  Google Scholar

[20]

E. HernándezD. O'Regan and K. Balachandran, On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Anal., 73 (2010), 3462-3471.  doi: 10.1016/j.na.2010.07.035.  Google Scholar

[21]

Y. Hino, S. Murakami and T. Naito, Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.  Google Scholar

[22]

J.-M. Jeong and H.-H. Roh, Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl., 321 (2006), 961-975.  doi: 10.1016/j.jmaa.2005.09.005.  Google Scholar

[23]

S. Ji, Approximate controllability of semilinear nonlocal fractional differential systems via an approximating method, Appl. Math. Comput., 236 (2014), 43-53.  doi: 10.1016/j.amc.2014.03.027.  Google Scholar

[24]

J. Jia and H. Wang, A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes, Comput. Math. Appl., 78 (2019), 1345-1356.  doi: 10.1016/j.camwa.2019.04.003.  Google Scholar

[25]

J. JiaH. Wang and X. Zheng, A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions, Appl. Numer. Math., 163 (2021), 15-29.  doi: 10.1016/j.apnum.2021.01.001.  Google Scholar

[26]

R. Joice Nirmala and K. Balachandran, The controllability of nonlinear implicit fractional delay dynamical systems, Int. J. Appl. Math. Comput. Sci., 27 (2017), 501-513.  doi: 10.1515/amcs-2017-0035.  Google Scholar

[27]

R. Joice NirmalaK. BalachandranL. Rodríguez-Germa and J. J. Trujillo, Controllability of nonlinear fractional delay dynamical systems, Rep. Math. Phys., 77 (2016), 87-104.  doi: 10.1016/S0034-4877(16)30007-6.  Google Scholar

[28]

K. Kavitha, V. Vijayakumar and R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Solitons Fractals, 139 (2020), 12pp. doi: 10.1016/j.chaos.2020.110035.  Google Scholar

[29]

A. KheirabadiA. M. Vaziri and S. Effati, Linear optimal control of time delay systems via Hermite wavelet, Numer. Algebra Control Optim., 10 (2020), 143-156.  doi: 10.3934/naco.2019044.  Google Scholar

[30]

A. KheirabadiA. M. Vaziri and S. Effati, Solving optimal control problem using Hermite wavelet, Numer. Algebra Control Optim., 9 (2019), 101-112.  doi: 10.3934/naco.2019008.  Google Scholar

[31]

A. Kumar and D. N. Pandey, Controllability results for non densely defined impulsive fractional differential equations in abstract space, Differ. Equ. Dyn. Syst., 29 (2021), 227-237.  doi: 10.1007/s12591-019-00471-1.  Google Scholar

[32]

S. Kumar and N. Sukavanam, Approximate controllability of fractional order semilinear systems with bounded delay, J. Differential Equations, 252 (2012), 6163-6174.  doi: 10.1016/j.jde.2012.02.014.  Google Scholar

[33]

H. Li and X. Ding, A control Lyapunov function approach to feedback stabilization of logical control networks, SIAM J. Control Optim., 57 (2019), 810-831.  doi: 10.1137/18M1170443.  Google Scholar

[34]

H. Li and Y. Wang, Controllability analysis and control design for switched Boolean networks with state and input constraints, SIAM J. Control Optim., 53 (2015), 2955-2979.  doi: 10.1137/120902331.  Google Scholar

[35]

H. LiX. Wu and J. Zhang, Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space, East Asian J. Appl. Math., 7 (2017), 439-454.  doi: 10.4208/eajam.031116.080317a.  Google Scholar

[36]

H. Li and Y. Wu, Artificial boundary conditions for nonlinear time fractional Burgers' equation on unbounded domains, Appl. Math. Lett., 120 (2021), 8pp. doi: 10.1016/j.aml.2021.107277.  Google Scholar

[37]

H. LiX. Xu and X. Ding, Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect, Appl. Math. Comput., 347 (2019), 557-565.  doi: 10.1016/j.amc.2018.11.018.  Google Scholar

[38]

H. LiY. Zheng and F. E. Alsaadi, Algebraic formulation and topological structure of Boolean networks with state-dependent delay, J. Comput. Appl. Math., 350 (2019), 87-97.  doi: 10.1016/j.cam.2018.10.003.  Google Scholar

[39]

K. LiJ. Peng and J. Gao, Controllability of nonlocal fractional differential systems of order $\alpha\in (1, 2]$ in Banach spaces, Rep. Math. Phys., 71 (2013), 33-43.  doi: 10.1016/S0034-4877(13)60020-8.  Google Scholar

[40]

L. Li, Z. Jiang and Z. Yin, Compact finite-difference method for 2D time-fractional convection-diffusion equation of groundwater pollution problems, Comput. Appl. Math., 39 (2020), 34pp. doi: 10.1007/s40314-020-01169-9.  Google Scholar

[41]

P. Li, X. Li and J. Cao, Input-to-state stability of nonlinear switched systems via Lyapunov method involving indefinite derivative, Complexity, 2018 (2018). doi: 10.1155/2018/8701219.  Google Scholar

[42]

X. Li, Further analysis on uniform stability of impulsive infinite delay differential equations, Appl. Math. Lett., 25 (2012), 133-137.  doi: 10.1016/j.aml.2011.08.001.  Google Scholar

[43]

X. LiH. LiY. Li and X. Yang, Function perturbation impact on stability in distribution of probabilistic Boolean networks, Math. Comput. Simulation, 177 (2020), 1-12.  doi: 10.1016/j.matcom.2020.04.008.  Google Scholar

[44]

X. Li, Z. Liu and C. C. Tisdell, Approximate controllability of fractional control systems with time delay using the sequence method, Electron. J. Differential Equations, 2017 (2017), 11pp.  Google Scholar

[45]

X. LiD. O'Regan and H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80 (2015), 85-99.  doi: 10.1093/imamat/hxt027.  Google Scholar

[46]

X. LiJ. ShenH. Akca and R. Rakkiyappan, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250 (2015), 798-804.  doi: 10.1016/j.amc.2014.10.113.  Google Scholar

[47]

Y. LiR. ZhangY. Zhang and B. Yang, Sliding mode control for uncertain T-S fuzzy systems with input and state delays, Numer. Algebra Control Optim., 10 (2020), 345-354.  doi: 10.3934/naco.2020006.  Google Scholar

[48]

J. Liang and H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Appl. Math. Comput., 254 (2015), 20-29.  doi: 10.1016/j.amc.2014.12.145.  Google Scholar

[49]

S. LiangG. ZhaoH. Li and X. Ding, Structural stability analysis of gene regulatory networks modeled by Boolean networks, Math. Methods Appl. Sci., 42 (2019), 2221-2230.  doi: 10.1002/mma.5488.  Google Scholar

[50]

L. Lin, Y. Liu and D. Zhao, Study on implicit-type fractional coupled system with integral boundary conditions, Mathematics, 9 (2021). doi: 10.3390/math9040300.  Google Scholar

[51]

B. Liu and Y. Liu, Positive solutions of a two-point boundary value problem for singular fractional differential equations in Banach space, J. Funct. Spaces Appl., 2013 (2013), 9pp. doi: 10.1155/2013/585639.  Google Scholar

[52]

L. LiuS. LuC. HanC. Li and Z. Feng, Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay, Numer. Algebra Control Optim., 10 (2020), 367-379.  doi: 10.3934/naco.2020008.  Google Scholar

[53]

M. Liu, S. Li, X. Li, L. Jin, C. Yi and Z. Huang, Intelligent controllers for multirobot competitive and dynamic tracking, Complexity, 2018 (2018). doi: 10.1155/2018/4573631.  Google Scholar

[54]

X. LiuZ. Liu and M. Bin, Approximate controllability of impulsive fractional neutral evolution equations with Riemann-Liouville fractional derivatives, J. Comput. Anal. Appl., 17 (2014), 468-485.   Google Scholar

[55]

Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340-353.  doi: 10.22436/jnsa.008.04.07.  Google Scholar

[56]

Y. Liu, Positive solutions using bifurcation techniques for boundary value problems of fractional differential equations, Abstr. Appl. Anal., 2013 (2013), 7pp. doi: 10.1155/2013/162418.  Google Scholar

[57]

Y. Liu and D. O'Regan, Controllability of impulsive functional differential systems with nonlocal conditions, Electron. J. Differential Equations, 2013 (2013), 10pp.  Google Scholar

[58]

Y. Liu and H. Yu, Bifurcation of positive solutions for a class of boundary value problems of fractional differential inclusions, Abstr. Appl. Anal., 2013 (2013), 8pp. doi: 10.1155/2013/942831.  Google Scholar

[59]

Y. LiuY. ZhengH. LiF. E. Alsaadi and B. Ahmad, Control design for output tracking of delayed Boolean control networks, J. Comput. Appl. Math., 327 (2018), 188-195.  doi: 10.1016/j.cam.2017.06.016.  Google Scholar

[60]

Z. Liu and M. Bin, Approximate controllability of impulsive Riemann-Liouville fractional equations in Banach spaces, J. Integral Equations Appl., 26 (2014), 527-551.  doi: 10.1216/JIE-2014-26-4-527.  Google Scholar

[61]

Z. LiuX. Li and J. Sun, Controllability of nonlinear fractional impulsive evolution systems, J. Integral Equations Appl., 25 (2013), 395-406.  doi: 10.1216/JIE-2013-25-3-395.  Google Scholar

[62]

X. Lv, X. Li, J. Cao and P. Duan, Exponential synchronization of neural networks via feedback control in complex environment, Complexity, 2018 (2018). doi: 10.1155/2018/4352714.  Google Scholar

[63]

T. Ma and B. Yan, The multiplicity solutions for nonlinear fractional differential equations of Riemann-Liouville type, Fract. Calc. Appl. Anal., 21 (2018), 801-818.  doi: 10.1515/fca-2018-0042.  Google Scholar

[64]

N. I. Mahmudov, Partial-approximate controllability of nonlocal fractional evolution equations via approximating method, Appl. Math. Comput., 334 (2018), 227-238.  doi: 10.1016/j.amc.2018.03.116.  Google Scholar

[65]

J. Mao and D. Zhao, Multiple positive solutions for nonlinear fractional differential equations with integral boundary value conditions and a parameter, J. Funct. Spaces, 2019 (2019), 11pp. doi: 10.1155/2019/2787569.  Google Scholar

[66]

X.-Y. MengY.-Q. Wu and J. Li, Bifurcation analysis of a singular nutrient-plankton-fish model with taxation, protected zone and multiple delays, Numer. Algebra Control Optim., 10 (2020), 391-423.  doi: 10.3934/naco.2020010.  Google Scholar

[67]

G. M. Mophou, Existence and uniqueness of mild solution to impulsive fractional differential equations, Nonlinear Anal., 72 (2010), 1604-1615.  doi: 10.1016/j.na.2009.08.046.  Google Scholar

[68]

P. Muthukumar and K. Thiagu, Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order $1<q<2$ with infinite delay and Poisson jumps, J. Dyn. Control Syst., 23 (2017), 213-235.  doi: 10.1007/s10883-015-9309-0.  Google Scholar

[69]

K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 25 (1987), 715-722.  doi: 10.1137/0325040.  Google Scholar

[70]

N. NajibN. BachokN. M. Arifin and F. M. Ali, Stability analysis of stagnation point flow in nanofluid over stretching/shrinking sheet with slip effect using Buongiorno's model, Numer. Algebra Control Optim., 9 (2019), 423-431.  doi: 10.3934/naco.2019041.  Google Scholar

[71]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[72]

D. Peng, X. Li, R. Rakkiyappan and Y. Ding, Stabilization of stochastic delayed systems: Event-triggered impulsive control, Appl. Math. Comput., 401 (2021), 12pp. doi: 10.1016/j.amc.2021.126054.  Google Scholar

[73] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[74]

J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87, Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[75]

T. Qi, Y. Liu and Y. Cui, Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions, J. Funct. Spaces, 2017 (2017), 9pp. doi: 10.1155/2017/6703860.  Google Scholar

[76]

T. QiY. Liu and Y. Zou, Existence result for a class of coupled fractional differential systems with integral boundary value conditions, J. Nonlinear Sci. Appl., 10 (2017), 4034-4045.  doi: 10.22436/jnsa.010.07.52.  Google Scholar

[77]

R. QianR. Hu and Y.-P. Fang, Local smooth representation of solution sets in parametric linear fractional programming problems, Numer. Algebra Control Optim., 9 (2019), 45-52.  doi: 10.3934/naco.2019004.  Google Scholar

[78]

J. QiaoL. Yang and J. Yao, Passive control for a class of nonlinear systems by using the technique of adding a power integrator, Numer. Algebra Control Optim., 10 (2020), 381-389.  doi: 10.3934/naco.2020009.  Google Scholar

[79]

H. Qin, Z. Gu, Y. Fu and T. Li, Existence of mild solutions and controllability of fractional impulsive integrodifferential systems with nonlocal conditions, J. Funct. Spaces, 2017 (2017), 11pp. doi: 10.1155/2017/6979571.  Google Scholar

[80]

H. Qin, J. Liu and X. Zuo, Controllability problem for fractional integrodifferential evolution systems of mixed type with the measure of noncompactness, J. Inequal. Appl., 2014 (2014), 15pp. doi: 10.1186/1029-242X-2014-292.  Google Scholar

[81]

H. Qin, X. Zuo and J. Liu, Existence and controllability results for fractional impulsive integrodifferential systems in Banach spaces, Abstr. Appl. Anal., 2013 (2013), 12pp. doi: 10.1155/2013/295837.  Google Scholar

[82]

M. M. Raja, V. Vijayakumar, R. Udhayakumar and Y. Zhou, A new approach on the approximate controllability of fractional differential evolution equations of order $1<r<2$ in Hilbert spaces, Chaos Solitons Fractals, 141 (2020), 10pp. doi: 10.1016/j.chaos.2020.110310.  Google Scholar

[83]

R. SakthivelR. GaneshY. Ren and S. M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3498-3508.  doi: 10.1016/j.cnsns.2013.05.015.  Google Scholar

[84]

R. SakthivelY. Ren and N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451-1459.  doi: 10.1016/j.camwa.2011.04.040.  Google Scholar

[85]

R. SakthivelS. Suganya and S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 63 (2012), 660-668.  doi: 10.1016/j.camwa.2011.11.024.  Google Scholar

[86]

T. Sathiyaraj, M. Fečkan and J. Wang, Null controllability results for stochastic delay systems with delayed perturbation of matrices, Chaos Solitons Fractals, 138 (2020), 11pp. doi: 10.1016/j.chaos.2020.109927.  Google Scholar

[87]

X.-B. Shu and Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465-476.  doi: 10.1016/j.amc.2015.10.020.  Google Scholar

[88]

A. Shukla and R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65 (2021), 861-875.  doi: 10.1007/s12190-020-01418-4.  Google Scholar

[89]

A. ShuklaN. Sukavanam and D. N. Pandey, Approximate controllability of semilinear fractional control systems of order $\alpha\in(1, 2]$ with infinite delay, Mediterr. J. Math., 13 (2016), 2539-2550.  doi: 10.1007/s00009-015-0638-8.  Google Scholar

[90]

A. ShuklaN. Sukavanam and D. N. Pandey, Approximate controllability of semilinear system with state delay using sequence method, J. Franklin Inst., 352 (2015), 5380-5392.  doi: 10.1016/j.jfranklin.2015.08.019.  Google Scholar

[91]

N. Sukavanam, Approximate controllability of semilinear control system with growing nonlinearity, in Mathematical Theory of Control, Lecture Notes in Pure and Appl. Math., 142, Dekker, New York, 1993,353–357.  Google Scholar

[92]

Y.-F. SunZ. Zeng and J. Song, Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation, Numer. Algebra Control Optim., 10 (2020), 157-164.  doi: 10.3934/naco.2019045.  Google Scholar

[93]

Z. Sun and T. Sugie, Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems, Numer. Algebra Control Optim., 9 (2019), 297-318.  doi: 10.3934/naco.2019020.  Google Scholar

[94]

I. Tarnove, A controllability problem for nonlinear systems, in Mathematical Theory of Control, Academic Press, New York, 1967, 170-179.  Google Scholar

[95]

Y. Tian, Some results on the eigenvalue problem for a fractional elliptic equation, Bound. Value. Probl., 2019 (2019), 11pp. doi: 10.1186/s13661-019-1127-y.  Google Scholar

[96]

Y. Tian and S. Zhao, Existence of solutions for perturbed fractional equations with two competing weighted nonlinear terms, Bound. Value. Probl., 2018 (2018), 16pp. doi: 10.1186/s13661-018-1074-z.  Google Scholar

[97]

C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar., 32 (1978), 75-96.  doi: 10.1007/BF01902205.  Google Scholar

[98]

R. Triggiani, On the lack of exact controllability for mild solutions in Banach spaces, J. Math. Anal. Appl., 50 (1975), 438-446.  doi: 10.1016/0022-247X(75)90033-5.  Google Scholar

[99]

F. Wang, Z. Zhang and Z. Zhou, A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations, J. Comput. Appl. Math., 386 (2021), 16pp. doi: 10.1016/j.cam.2020.113233.  Google Scholar

[100]

J. WangZ. Fan and Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces, J. Optim. Theory Appl., 154 (2012), 292-302.  doi: 10.1007/s10957-012-9999-3.  Google Scholar

[101]

J. Wang and Y. Zhou, Complete controllability of fractional evolution systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4346-4355.  doi: 10.1016/j.cnsns.2012.02.029.  Google Scholar

[102]

Y. Wang, Y. Liu and Y. Cui, Infinitely many solutions for impulsive fractional boundary value problem with $p$-Laplacian, Bound. Value Probl., 2018 (2018), 16pp. doi: 10.1186/s13661-018-1012-0.  Google Scholar

[103]

Y. Wang, Y. Liu and Y. Cui, Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations, Bound. Value Probl., 2018 (2018), 21pp. doi: 10.1186/s13661-018-1114-8.  Google Scholar

[104]

Y. Wang, Y. Liu and Y. Cui, Multiple solutions for a nonlinear fractional boundary value problem via critical point theory, J. Funct. Spaces, 2017 (2017), 8pp. doi: 10.1155/2017/8548975.  Google Scholar

[105]

H.-Z. WeiX. Zuo and C.-R. Chen, Unified vector quasiequilibrium problems via improvement sets and nonlinear scalarization with stability analysis, Numer. Algebra Control Optim., 10 (2020), 107-125.  doi: 10.3934/naco.2019036.  Google Scholar

[106]

T. WeiX. Xie and X. Li, Input-to-state stability of delayed reaction-diffusion neural networks with multiple impulses, AIMS Math., 6 (2021), 5786-5800.  doi: 10.3934/math.2021342.  Google Scholar

[107]

X. XuH. LiY. Li and F. E. Alsaadi, Output tracking control of Boolean control networks with impulsive effects, Math. Methods Appl. Sci., 41 (2018), 1554-1564.  doi: 10.1002/mma.4685.  Google Scholar

[108]

X. XuY. LiuH. Li and F. E. Alsaadi, Robust set stabilization of Boolean control networks with impulsive effects, Nonlinear Anal. Model. Control, 23 (2018), 553-567.  doi: 10.15388/NA.2018.4.6.  Google Scholar

[109]

D. YangX. Li and J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal. Hybrid Syst., 32 (2019), 294-305.  doi: 10.1016/j.nahs.2019.01.006.  Google Scholar

[110]

D. YangX. LiJ. Shen and Z. Zhou, State-dependent switching control of delayed switched systems with stable and unstable modes, Math. Methods Appl. Sci., 41 (2018), 6968-6983.  doi: 10.1002/mma.5209.  Google Scholar

[111]

H. Yang and Y. Zhao, Controllability of fractional evolution systems of Sobolev type via resolvent operators, Bound. Value Probl., 2020 (2020), 13pp. doi: 10.1186/s13661-020-01417-1.  Google Scholar

[112]

Q. Yang, H. Li and Y. Liu, Pinning control design for feedback stabilization of constrained Boolean control networks, Adv. Difference Equ., 2016 (2016), 16pp. doi: 10.1186/s13662-016-0909-0.  Google Scholar

[113]

X. YangX. LiQ. Xi and P. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495-1515.  doi: 10.3934/mbe.2018069.  Google Scholar

[114]

A. ZareM. Keyanpour and M. Salahi, On fractional quadratic optimization problem with two quadratic constraints, Numer. Algebra Control Optim., 10 (2020), 301-315.  doi: 10.3934/naco.2020003.  Google Scholar

[115]

D. Zhang and Y. Liang, Existence and controllability of fractional evolution equation with sectorial operator and impulse, Adv. Difference Equ., 2018 (2018), 12pp. doi: 10.1186/s13662-018-1664-1.  Google Scholar

[116]

L. Zhang and Z. Zhou, Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation, Appl. Numer. Math., 143 (2019), 247-262.  doi: 10.1016/j.apnum.2019.04.003.  Google Scholar

[117]

X. Zhang, C. Zhu and C. Yuan, Approximate controllability of impulsive fractional stochastic differential equations with state-dependent delay, Adv. Difference Equ., 2015 (2015), 12pp. doi: 10.1186/s13662-015-0412-z.  Google Scholar

[118]

D. Zhao, New results on controllability for a class of fractional integrodifferential dynamical systems with delay in Banach spaces, Fractal Fract., 5 (2021), 1-18.  doi: 10.3390/fractalfract5030089.  Google Scholar

[119]

D. Zhao and Y. Liu, Eigenvalues of a class of singular boundary value problems of impulsive differential equations in Banach spaces, J. Funct. Spaces, 2014 (2014), 12pp. doi: 10.1155/2014/720494.  Google Scholar

[120]

D. Zhao and Y. Liu, Multiple positive solutions for nonlinear fractional boundary value problems, The Scientific World Journal, 2013 (2013). doi: 10.1155/2013/473828.  Google Scholar

[121]

D. Zhao and Y. Liu, Positive solutions for a class of fractional differential coupled system with integral boundary value conditions, J. Nonlinear Sci. Appl., 9 (2016), 2922-2942.  doi: 10.22436/jnsa.009.05.86.  Google Scholar

[122]

D. Zhao and Y. Liu, Twin solutions to semipositone boundary value problems for fractional differential equations with coupled integral boundary conditions, J. Nonlinear Sci. Appl., 10 (2017), 3544-3565.  doi: 10.22436/jnsa.010.07.16.  Google Scholar

[123]

D. ZhaoY. Liu and X. Li, Controllability for a class of semilinear fractional evolution systems via resolvent operators, Commun. Pur. Appl. Anal., 18 (2019), 455-478.  doi: 10.3934/cpaa.2019023.  Google Scholar

[124]

D. Zhao and J. Mao, New controllability results of fractional nonlocal semilinear evolution systems with finite delay, Complexity, 2020 (2020). doi: 10.1155/2020/7652648.  Google Scholar

[125]

D. Zhao and J. Mao, Positive solutions for a class of nonlinear singular fractional differential systems with Riemann-Stieltjes coupled integral boundary value conditions, Symmetry, 13 (2021), 1-19.  doi: 10.3390/sym13010107.  Google Scholar

[126]

G. ZhaoS. Liang and H. Li, Stability analysis of activation-inhibition Boolean networks with stochastic function structures, Math. Methods Appl. Sci., 43 (2020), 8694-8705.  doi: 10.1002/mma.6529.  Google Scholar

[127]

Y. Zhao, X. Li and J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 10pp. doi: 10.1016/j.amc.2020.125467.  Google Scholar

[128]

H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J. Control Optim., 22 (1983), 551-565.  doi: 10.1137/0321033.  Google Scholar

[129]

Y. Zhou and J. W. He, New results on controllability of fractional evolution systems with order $\alpha\in (1, 2)$, Evol. Equ. Control Theory, 10 (2021), 491-509.  doi: 10.3934/eect.2020077.  Google Scholar

[130]

Z. Zhou and W. Gong, Finite element approximation of optimal control problems governed by time fractional diffusion equation, Comput. Math. Appl., 71 (2016), 301-318.  doi: 10.1016/j.camwa.2015.11.014.  Google Scholar

[131]

Z. J. Zhou and N. N. Yan, A survey of numerical methods for convection-diffusion optimal control problems, J. Numer. Math., 22 (2014), 61-85.  doi: 10.1515/jnum-2014-0003.  Google Scholar

[1]

Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3713-3740. doi: 10.3934/dcdsb.2018312

[2]

Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027

[3]

Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control & Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845

[4]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[5]

Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023

[6]

Jinrong Wang, Michal Fečkan, Yong Zhou. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 471-486. doi: 10.3934/eect.2017024

[7]

Xuan-Xuan Xi, Mimi Hou, Xian-Feng Zhou, Yanhua Wen. Approximate controllability of fractional neutral evolution systems of hyperbolic type. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021035

[8]

Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020089

[9]

Xianlong Fu. Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evolution Equations & Control Theory, 2017, 6 (4) : 517-534. doi: 10.3934/eect.2017026

[10]

Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations & Control Theory, 2021, 10 (3) : 491-509. doi: 10.3934/eect.2020077

[11]

Yong Zhou, V. Vijayakumar, R. Murugesu. Controllability for fractional evolution inclusions without compactness. Evolution Equations & Control Theory, 2015, 4 (4) : 507-524. doi: 10.3934/eect.2015.4.507

[12]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[13]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138

[14]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[15]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[16]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[17]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1833-1849. doi: 10.3934/cpaa.2021044

[18]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4927-4962. doi: 10.3934/dcdsb.2020320

[20]

Nguyen Dinh Cong, Doan Thai Son, Stefan Siegmund, Hoang The Tuan. An instability theorem for nonlinear fractional differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3079-3090. doi: 10.3934/dcdsb.2017164

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (50)
  • HTML views (62)
  • Cited by (0)

Other articles
by authors

[Back to Top]