[1]
|
J. Abate and W. Whitt, A unified framework for numerically inverting Laplace transforms, INFORMS Journal on Computing, 18 (2006), 408-421.
doi: 10.1287/ijoc.1050.0137.
|
[2]
|
D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511809781.
|
[3]
|
O. E. Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modelling, Scandinavian Journal of Statistics, 24 (1997), 1-13.
doi: 10.1111/1467-9469.00045.
|
[4]
|
F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062.
|
[5]
|
M. Boyarchenko and S. Boyarchenko, Double barrier options in regime-switching hyper-exponential jump-diffusion models, International Journal of Theoretical and Applied Finance, 14 (2011), 1005-1043.
doi: 10.1142/S0219024911006620.
|
[6]
|
S. Boyarchenko and S. Levendorskii, Efficient Laplace inversion, Wiener-Hopf factorization and pricing lookbacks, International Journal of Theoretical and Applied Finance, 16 (2013), 1350011.
doi: 10.1142/S0219024913500118.
|
[7]
|
M. Boyarchenko and S. Levendorskii, Static and semi-static hedging as contrarian or conformist bets, preprint, arXiv: 1902.02854.
doi: 10.1111/mafi.12240.
|
[8]
|
N. Cai, On first passage times of a hyper-exponential jump diffusion process, Operations Reseearch Letters, 37 (2009), 127-134.
doi: 10.1016/j.orl.2009.01.002.
|
[9]
|
N. Cai, N. Chen and X. Wan, Pricing double-barrier options under a flexible jump diffusion model, Operations Research Letters, 37 (2009), 163-167.
doi: 10.1016/j.orl.2009.02.006.
|
[10]
|
N. Cai, N. Chen and X. Wan, Occupation times of jump-diffusion processes with double exponential jumps and the pricing of options, Mathematics of Operations Research, 35 (2010), 412-437.
doi: 10.1287/moor.1100.0447.
|
[11]
|
N. Cai and S. G. Kou, Option pricing under a mixed-exponential jump diffusion model, Management Science, 57 (2011), 2067-2081.
doi: 10.1287/opre.1110.1006.
|
[12]
|
N. Cai and S. G. Kou, Pricing Asian options under a hyper-exponential jump-diffusion model, Operations Research, 60 (2012), 64-77.
doi: 10.1287/opre.1110.1006.
|
[13]
|
G. Campolieti, R. N. Makarov and K. Wouterloot, Pricing step options under the CEV and other solvable diffusion models, International Journal of Theoretical and Applied Finance, 16 (2013), 1350027.
doi: 10.1142/S0219024913500271.
|
[14]
|
P. P. Carr, Randomization and the American put, The Review of Financial Studies, 11 (1998), 597-626.
|
[15]
|
P. P. Carr, H. Geman, D. B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation, Journal of Business, 75 (2002), 305-332.
|
[16]
|
M. Chesney and N. Vasiljevic, Parisian options with jumps: A maturity-excursion randomization approach, Quant. Finance, 18 (2018), 1887-1908.
doi: 10.1080/14697688.2018.1444785.
|
[17]
|
Y. Chuancun, S. Ying and W. Yuzhen, Exit problems for jump processes with applications to dividend problems, Journal of Computational and Applied Mathematics, 245 (2013), 30-52.
doi: 10.1016/j.cam.2012.12.004.
|
[18]
|
D. Davydov and V. Linetsky, Structuring, pricing and hedging double barrier step options, Journal of Computational Finance, 5 (2002), 55-87.
|
[19]
|
J. Detemple, A. S. Laminou and F. Moraux, American step options, European Journal of Operational Research, 282 (2020), 363-385.
doi: 10.1016/j.ejor.2019.09.009.
|
[20]
|
J. Fajardo and E. Mordecki, Symmetry and duality in Lévy markets, Quant. Finance, 6 (2006), 219-227.
doi: 10.1080/14697680600680068.
|
[21]
|
J. Fajardo and E. Mordecki, Skewness premium with Lévy processes, Quant. Finance, 14 (2014), 1619-1616.
doi: 10.1080/14697688.2011.618809.
|
[22]
|
W. Farkas, L. Mathys and N. Vasiljević, Intra-Horizon expected shortfall and risk structure in models with jumps, Mathematical Finance, 31 (2021), 772-823.
doi: 10.1111/mafi.12302.
|
[23]
|
M. B. Garman and S. W. Kohlhagen, Foreign currency option values, Journal of International Money and Finance, 2 (1983), 231-237.
|
[24]
|
H. U. Gerber and E. S. W. Shiu, Option pricing by Esscher transforms, Transactions of the Society of Actuaries, 46 (1994), 99-191.
|
[25]
|
M. J. Harrison and S. R. Pliska, Martingales and stochastic integrals in the theory of continous trading, Stochastic Process. Appl., 11 (1981), 215-260.
doi: 10.1016/0304-4149(81)90026-0.
|
[26]
|
M. Hofer and P. Mayer, Pricing and hedging of lookback options in hyperexponential jump diffusion models, Applied Mathematical Finance, 20 (2013), 489-511.
doi: 10.1080/1350486X.2013.774985.
|
[27]
|
K. R. Jackson, S. Jaimungal and V. Surkov, Fourier space time-stepping for option pricing with Lévy models, Journal of Computational Finance, 12 (2008), 1-29.
doi: 10.21314/JCF.2008.178.
|
[28]
|
M. Jeanblanc and M. Chesney, Pricing American currency options in an exponential Lévy model, Applied Mathematical Finance, 11 (2004), 207-225.
|
[29]
|
M. Jeanblanc, M. Yor and M. Chesney, Mathematical Methods for Financial Markets, Springer Finance, Springer, Berlin, 2006.
doi: 10.1007/978-1-84628-737-4.
|
[30]
|
T. Kimura, Alternative randomization for valuing American options, Asia-Pacific Journal of Operational Research, 27 (2010), 167-187.
doi: 10.1142/S0217595910002624.
|
[31]
|
S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.
|
[32]
|
S. G. Kou and H. Wang, First passage times of a jump diffusion process, Advances in Applied Probability, 35 (2003), 504-531.
doi: 10.1239/aap/1051201658.
|
[33]
|
S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model, Management Science, 50 (2004), 1178-1192.
doi: 10.1287/opre.1110.1006.
|
[34]
|
A. Kuznetsov, On the convergence of the Gaver-Stehfest algorithm, Siam Journal on Numerical Analysis, 51 (2013), 2984-2998.
doi: 10.1137/13091974X.
|
[35]
|
D. Lamberton and M. Mikou, The smooth-fit property in an exponential Lévy model, Journal of Applied Probability, 49 (2011), 137-149.
doi: 10.1017/S0021900200008901.
|
[36]
|
M. Leippold and N. Vasiljević, Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model, Journal of Banking and Finance, 77 (2017), 78-94.
|
[37]
|
M. Leippold and N. Vasiljević, Option-Implied intra-horizon value-at-risk, Management Science, 66 (2019), 397-414.
doi: 10.1287/mnsc.2018.3157.
|
[38]
|
S. Levendorskii, Pricing of the American put under Lévy processes, International Journal of Theoretical and Applied Finance, 7 (2004), 303-335.
doi: 10.1142/S0219024904002463.
|
[39]
|
J. Lin and K. Palmer, Convergence of barrier option prices in the binomial model, Mathematical Finance, 23 (2013), 318-338.
doi: 10.1111/j.1467-9965.2011.00501.x.
|
[40]
|
V. Linetsky, Step options, Mathematical Finance, 9 (1999), 55-96.
doi: 10.1111/1467-9965.00063.
|
[41]
|
D. B. Madan, P. P. Carr and E. C. Chang, The variance gamma process and option pricing, European Finance Review, 2 (1998), 79-105.
|
[42]
|
D. B. Madan and E. Seneta, The variance gamma model for share market returns, The Journal of Business, 63 (1990), 511-524.
|
[43]
|
L. Mathys, Valuing tradeability in exponential Lévy models, Quantitative Finance and Economics, 4 (2020), 459-488.
doi: 10.3934/QFE.2020021.
|
[44]
|
L. Mathys, On extensions of the Barone-Adesi & Whaley method to price American-type options, Journal of Computational Finance, 24 (2020), 33-76.
doi: 10.21314/JCF.2020.397.
|
[45]
|
J. P. V. Nunes, J. P. Ruas and J. C. Dias, Early exercise boundaries for American-style knock-out options, European Journal of Operational Research, 285 (2020), 753-766.
doi: 10.1016/j.ejor.2020.02.006.
|
[46]
|
G. Peskir and A. N. Shiryaev, Optimal Stopping and Free-Boundary Problems, Lectures in Mathematics, ETH Zürich, Bikhäuser, 2006.
|
[47]
|
N. Rodosthenous and H. Zhang, Beating the omega clock: An optimal stopping problem with random time-horizon under spectrally negative Lévy models, Annals of Applied Probability, 28 (2018), 2105-2140.
doi: 10.1214/17-AAP1322.
|
[48]
|
K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1999.
|
[49]
|
L. Trigeorgis and A. E. Tsekrekos, Real options in operations research: A review, European Journal of Operational Research, 270 (2018), 1-24.
doi: 10.1016/j.ejor.2017.11.055.
|
[50]
|
P. P. Valko and J. Abate, Comparison of sequence accelerators for the Gaver method of numerical Laplace transform inversion, Computers & Mathematics with Applications, 48 (2004), 629-636.
doi: 10.1016/j.camwa.2002.10.017.
|
[51]
|
H. Y. Wong and J. Zhao, Valuing American options under the CEV model by Laplace-Carson transforms, Operations Research Letters, 38 (2010), 474-481.
doi: 10.1016/j.orl.2010.07.006.
|
[52]
|
L. Wu and J. Zhou, Occupation times of hyper-exponential jump diffusion processes with application to price step options, Journal of Computational and Applied Mathematics, 294 (2016), 251-274.
doi: 10.1016/j.cam.2015.09.001.
|
[53]
|
L. Wu, J. Zhou and Y. Bai, Occupation times of Lévy-driven Ornstein-Uhlenbeck processes with two-sided exponential jumps and applications, Statistics and Probability Letters, 125 (2017), 80-90.
doi: 10.1016/j.spl.2017.01.021.
|
[54]
|
X. Xing and H. Yang, American type geometric step options, Journal of Industrial and Management Optimization, 9 (2013), 549-560.
doi: 10.3934/jimo.2013.9.549.
|