doi: 10.3934/fmf.2021002

Semi-analytic pricing of double barrier options with time-dependent barriers and rebates at hit

1. 

Tandon School of Engineering, New York University, 1 Metro Tech Center, 10th floor, Brooklyn NY USA

2. 

Moscow State University, Moscow, Russia

* Corresponding author: Andrey Itkin

Received  January 2021 Revised  April 2021 Published  May 2021

Fund Project: Dmitry Muravey acknowledges support by the Russian Science Foundation under the Grant number 20-68-47030

We continue a series of papers devoted to construction of semi-analytic solutions for barrier options. These options are written on underlying following some simple one-factor diffusion model, but all the parameters of the model as well as the barriers are time-dependent. We managed to show that these solutions are systematically more efficient for pricing and calibration than, e.g., the corresponding finite-difference solvers. In this paper we extend this technique to pricing double barrier options and present two approaches to solving it: the General Integral transform method and the Heat Potential method. Our results confirm that for double barrier options these semi-analytic techniques are also more efficient than the traditional numerical methods used to solve this type of problems.

Citation: Andrey Itkin, Dmitry Muravey. Semi-analytic pricing of double barrier options with time-dependent barriers and rebates at hit. Frontiers of Mathematical Finance, doi: 10.3934/fmf.2021002
References:
[1] L. Andersen and V. Piterbarg, Interest Rate Modeling, 2, Atlantic Financial Press, 2010.   Google Scholar
[2]

I. Bouchouev, Negative oil prices put spotlight on investors., Available from: Risk.net. Google Scholar

[3]

R. Brogan, Options traders adapt to electronic markets in pandemic, 2020., Available from: https://flextrade.com/options-traders-adapt-to-electronic-markets-in-pandemic/. Google Scholar

[4]

P. Carr and A. Itkin, Semi-closed form solutions for barrier and American options written on a time-dependent Ornstein Uhlenbeck process, Journal of Derivatives, Fall (2021). doi: 10.3905/jod.2020.1.113.  Google Scholar

[5]

P. CarrA. Itkin and D. Muravey, Semi-closed form prices of barrier options in the time-dependent CEV and CIR models, Journal of Derivatives, 28 (2020), 26-50.  doi: 10.3905/jod.2020.1.113.  Google Scholar

[6]

M. Costabel, Boundary integral operators for the heat equation, Integral Equations and Operator Theory, 13 (1990), 498-552.  doi: 10.1007/BF01210400.  Google Scholar

[7]

J. C. CoxJ. E. IngersollJr . and S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407.  doi: 10.2307/1911242.  Google Scholar

[8]

M. Craddock, Fundamental solutions, transition densities and the integration of Lie symmetries, Journal of Differential Equations, 246 (2009), 2538-2560.  doi: 10.1016/j.jde.2008.10.017.  Google Scholar

[9]

M. Craddock and K. Lennox, Lie group symmetries as integral transforms of fundamental solutions, J. Differential Equations, 232 (2007), 652-674.  doi: 10.1016/j.jde.2006.07.011.  Google Scholar

[10]

C. Dias, A method of recursive images to solve transient heat diffusionin multilayer materials, International Journal of Heat and Mass Transfer, 85 (2015), 1075-1083.  doi: 10.1016/j.ijheatmasstransfer.2015.01.138.  Google Scholar

[11]

R. Doff, Valuing scenarios with real option pricing., Available from: Risk.net. Google Scholar

[12]

S. Farrington and M. Cesa, Podcast: Kaminski and Ronn on negative oil and options pricing., Available from: Risk.net. Google Scholar

[13]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, New Jersey, 1964.  Google Scholar

[14]

N. Guinter, Potential Theory and Its Applications to Basic Problems of Mathematical Physics, Frederick Ungar, New York, 1967.  Google Scholar

[15]

A. Itkin, Pricing Derivatives Under Lévy Models, 1$^st$ edition, Pseudo-Differential Operators, 12, Birkhauser, Basel, 2017. doi: 10.1007/978-1-4939-6792-6.  Google Scholar

[16]

A. Itkin, A. Lipton and D. Muravey, From the Black-Karasinski to the Verhulst model to accommodate the unconventional Fed's policy, 2020., https://arXiv.org/abs/2006.11976. Google Scholar

[17]

A. Itkin, A. Lipton and D. Muravey, Multilayer heat equations: Application to finance, 2020, https://arXiv.org/abs/2102.08338. Google Scholar

[18]

A. Itkin and D. Muravey, Semi-analytic pricing of double barrier options with time-dependent barriers and rebates at hit, 2020., Available from: https://arXiv.org/abs/2009.09342. Google Scholar

[19]

A. Itkin and D. Muravey, Semi-closed form prices of barrier options in the Hull-White model, Risk, Dec. (2020). Google Scholar

[20]

E. M. Kartashov, Analytical methods for solution of non-stationary heat conductance boundary problems in domains with moving boundaries, Izvestiya RAS, Energetika, 5 (1999), 133-185.   Google Scholar

[21]

E. Kartashov, Analytical Methods in the Theory of Heat Conduction in Solids, Vysshaya Shkola, Moscow, 2001. Google Scholar

[22]

E. Kartashov and B. Y. Lyubov, Analytical methods in the theory of heat conduction in solids, Izv. Akad. Nauk SSSR, Energ. Trans., 83–111. Google Scholar

[23]

G. Kristensson, Jump conditions for single and doublelayer potentials, 2009., Available from: file:///C:/AndreyItkin/My Finance/FinPapers/BK/liter/JumpConditions.pdf. Google Scholar

[24]

A. Lipton, Mathematical Methods For Foreign Exchange: A Financial Engineer's Approach, World Scientific, 2001. doi: 10.1142/4694.  Google Scholar

[25]

A. Lipton, The vol smile problem, Risk Magazine, 15 (2002), 61-65.   Google Scholar

[26]

A. Lipton and M. de Prado, A closed-form solution for optimal mean-reverting trading strategies, SSRN, (2020), 32 pp. doi: 10.2139/ssrn.3534445.  Google Scholar

[27]

A. Lipton and V. Kaushansky, On the first hitting time density of an Ornstein-Uhlenbeck process, 2018., Available from: https://arXiv.org/pdf/1810.02390.pdf. doi: 10.1080/14697688.2020.1713394.  Google Scholar

[28]

A. Lipton, V. Kaushansky and C. Reisinger, Semi-analytical solution of a McKean-Vlasov equation with feedback through hitting boundary, European Journal of Applied Mathematics, (2019), 1–34. doi: 10.1017/S0956792519000342.  Google Scholar

[29]

A. Lyapunov, Works on the Theory of Potential, (Russian) Technical and Theoretical State Publishing House, Moscow - Leningrad, 1949.  Google Scholar

[30]

A. Mijatovic, Local time and the pricing of time-dependent barrier options, Finance and Stochastics, 14 (2010), 13-48.  doi: 10.1007/s00780-008-0077-5.  Google Scholar

[31]

D. Mumford, C. M. M. Nori, E. Previato and M. Stillman, Tata Lectures on Theta, Progress in Mathematics, Birkhäuser Boston, 1983. doi: 10.1007/978-0-8176-4578-6.  Google Scholar

[32]

F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl and M. A. McClain, NIST Digital Library of Mathematical Functions., Available from: http://dlmf.nist.gov/. Google Scholar

[33]

A. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC, 2002.  Google Scholar

[34]

B. Quaife, Fast Integral Equation Methods for the Modified Helmholtz Equation, Ph.D thesis, University of Calgary, 2011.  Google Scholar

[35]

M. SpivakS. Veerapaneni and L. Greengard, The fast generalized gauss transform, SIAM Journal on Scientific Computing, 32 (2010), 3092-3107.  doi: 10.1137/100790744.  Google Scholar

[36] A. Tikhonov and A. Samarskii, Equations of Mathematical Physics, Pergamon Press, Oxford, 1963.   Google Scholar
[37] B. van der Pol and H. Bremmer, Operational Calculus Based on the Two-Sided Laplace Integral, Cambridge University Press, Cambridge, UK, 1950.   Google Scholar
[38] A. M. Wazwaz, Linear and Nonlinear Integral Equations, Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg, 2011.  doi: 10.1007/978-3-642-21449-3.  Google Scholar

show all references

References:
[1] L. Andersen and V. Piterbarg, Interest Rate Modeling, 2, Atlantic Financial Press, 2010.   Google Scholar
[2]

I. Bouchouev, Negative oil prices put spotlight on investors., Available from: Risk.net. Google Scholar

[3]

R. Brogan, Options traders adapt to electronic markets in pandemic, 2020., Available from: https://flextrade.com/options-traders-adapt-to-electronic-markets-in-pandemic/. Google Scholar

[4]

P. Carr and A. Itkin, Semi-closed form solutions for barrier and American options written on a time-dependent Ornstein Uhlenbeck process, Journal of Derivatives, Fall (2021). doi: 10.3905/jod.2020.1.113.  Google Scholar

[5]

P. CarrA. Itkin and D. Muravey, Semi-closed form prices of barrier options in the time-dependent CEV and CIR models, Journal of Derivatives, 28 (2020), 26-50.  doi: 10.3905/jod.2020.1.113.  Google Scholar

[6]

M. Costabel, Boundary integral operators for the heat equation, Integral Equations and Operator Theory, 13 (1990), 498-552.  doi: 10.1007/BF01210400.  Google Scholar

[7]

J. C. CoxJ. E. IngersollJr . and S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407.  doi: 10.2307/1911242.  Google Scholar

[8]

M. Craddock, Fundamental solutions, transition densities and the integration of Lie symmetries, Journal of Differential Equations, 246 (2009), 2538-2560.  doi: 10.1016/j.jde.2008.10.017.  Google Scholar

[9]

M. Craddock and K. Lennox, Lie group symmetries as integral transforms of fundamental solutions, J. Differential Equations, 232 (2007), 652-674.  doi: 10.1016/j.jde.2006.07.011.  Google Scholar

[10]

C. Dias, A method of recursive images to solve transient heat diffusionin multilayer materials, International Journal of Heat and Mass Transfer, 85 (2015), 1075-1083.  doi: 10.1016/j.ijheatmasstransfer.2015.01.138.  Google Scholar

[11]

R. Doff, Valuing scenarios with real option pricing., Available from: Risk.net. Google Scholar

[12]

S. Farrington and M. Cesa, Podcast: Kaminski and Ronn on negative oil and options pricing., Available from: Risk.net. Google Scholar

[13]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, New Jersey, 1964.  Google Scholar

[14]

N. Guinter, Potential Theory and Its Applications to Basic Problems of Mathematical Physics, Frederick Ungar, New York, 1967.  Google Scholar

[15]

A. Itkin, Pricing Derivatives Under Lévy Models, 1$^st$ edition, Pseudo-Differential Operators, 12, Birkhauser, Basel, 2017. doi: 10.1007/978-1-4939-6792-6.  Google Scholar

[16]

A. Itkin, A. Lipton and D. Muravey, From the Black-Karasinski to the Verhulst model to accommodate the unconventional Fed's policy, 2020., https://arXiv.org/abs/2006.11976. Google Scholar

[17]

A. Itkin, A. Lipton and D. Muravey, Multilayer heat equations: Application to finance, 2020, https://arXiv.org/abs/2102.08338. Google Scholar

[18]

A. Itkin and D. Muravey, Semi-analytic pricing of double barrier options with time-dependent barriers and rebates at hit, 2020., Available from: https://arXiv.org/abs/2009.09342. Google Scholar

[19]

A. Itkin and D. Muravey, Semi-closed form prices of barrier options in the Hull-White model, Risk, Dec. (2020). Google Scholar

[20]

E. M. Kartashov, Analytical methods for solution of non-stationary heat conductance boundary problems in domains with moving boundaries, Izvestiya RAS, Energetika, 5 (1999), 133-185.   Google Scholar

[21]

E. Kartashov, Analytical Methods in the Theory of Heat Conduction in Solids, Vysshaya Shkola, Moscow, 2001. Google Scholar

[22]

E. Kartashov and B. Y. Lyubov, Analytical methods in the theory of heat conduction in solids, Izv. Akad. Nauk SSSR, Energ. Trans., 83–111. Google Scholar

[23]

G. Kristensson, Jump conditions for single and doublelayer potentials, 2009., Available from: file:///C:/AndreyItkin/My Finance/FinPapers/BK/liter/JumpConditions.pdf. Google Scholar

[24]

A. Lipton, Mathematical Methods For Foreign Exchange: A Financial Engineer's Approach, World Scientific, 2001. doi: 10.1142/4694.  Google Scholar

[25]

A. Lipton, The vol smile problem, Risk Magazine, 15 (2002), 61-65.   Google Scholar

[26]

A. Lipton and M. de Prado, A closed-form solution for optimal mean-reverting trading strategies, SSRN, (2020), 32 pp. doi: 10.2139/ssrn.3534445.  Google Scholar

[27]

A. Lipton and V. Kaushansky, On the first hitting time density of an Ornstein-Uhlenbeck process, 2018., Available from: https://arXiv.org/pdf/1810.02390.pdf. doi: 10.1080/14697688.2020.1713394.  Google Scholar

[28]

A. Lipton, V. Kaushansky and C. Reisinger, Semi-analytical solution of a McKean-Vlasov equation with feedback through hitting boundary, European Journal of Applied Mathematics, (2019), 1–34. doi: 10.1017/S0956792519000342.  Google Scholar

[29]

A. Lyapunov, Works on the Theory of Potential, (Russian) Technical and Theoretical State Publishing House, Moscow - Leningrad, 1949.  Google Scholar

[30]

A. Mijatovic, Local time and the pricing of time-dependent barrier options, Finance and Stochastics, 14 (2010), 13-48.  doi: 10.1007/s00780-008-0077-5.  Google Scholar

[31]

D. Mumford, C. M. M. Nori, E. Previato and M. Stillman, Tata Lectures on Theta, Progress in Mathematics, Birkhäuser Boston, 1983. doi: 10.1007/978-0-8176-4578-6.  Google Scholar

[32]

F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl and M. A. McClain, NIST Digital Library of Mathematical Functions., Available from: http://dlmf.nist.gov/. Google Scholar

[33]

A. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC, 2002.  Google Scholar

[34]

B. Quaife, Fast Integral Equation Methods for the Modified Helmholtz Equation, Ph.D thesis, University of Calgary, 2011.  Google Scholar

[35]

M. SpivakS. Veerapaneni and L. Greengard, The fast generalized gauss transform, SIAM Journal on Scientific Computing, 32 (2010), 3092-3107.  doi: 10.1137/100790744.  Google Scholar

[36] A. Tikhonov and A. Samarskii, Equations of Mathematical Physics, Pergamon Press, Oxford, 1963.   Google Scholar
[37] B. van der Pol and H. Bremmer, Operational Calculus Based on the Two-Sided Laplace Integral, Cambridge University Press, Cambridge, UK, 1950.   Google Scholar
[38] A. M. Wazwaz, Linear and Nonlinear Integral Equations, Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg, 2011.  doi: 10.1007/978-3-642-21449-3.  Google Scholar
Figure 1.  Contours of integration of Eq.(18) in the complex plane $ p \in \mathbb{C} $ with poles at $ p_1^\pm, p_2^\pm, \ldots $.
Figure 2.  Prices of Call double barrier options obtained in the test by using three methods.}
Figure 3.  Absolute difference in prices of Call double barrier options obtained in the test by using three methods.
Table 1.  Parameters of the test
$ S_0 $ $ \sigma_0 $ $ \sigma_K $ $ r $ $ a_L $ $ b_L $ $ a_H $ $ b_H $,
50 0.3 0.7 0.01 20 5 71 -2
$ S_0 $ $ \sigma_0 $ $ \sigma_K $ $ r $ $ a_L $ $ b_L $ $ a_H $ $ b_H $,
50 0.3 0.7 0.01 20 5 71 -2
Table 2.  Comparison of double barriers Call option prices obtained by various methods
T 0.038 0.083 0.333 0.500 1.000 2.000 5.000 0.038 0.083 0.333 0.500 1.000 2.000 5.000
K MC GIT
45 5.0174 5.0379 5.1500 5.2212 5.4473 5.8825 7.1820 5.0173 5.0375 5.1498 5.2244 5.4478 5.8912 7.1946
50 0.1732 0.2583 0.5216 0.6370 0.8941 1.2815 2.4866 0.1735 0.2587 0.5243 0.6407 0.8984 1.2932 2.5056
55 0.0000 0.0000 0.0000 0.0000 0.0012 0.0075 0.0766 0.0000 0.0000 0.0000 0.0000 0.0012 0.0083 0.0852
K FD HP
45 5.0173 5.0374 5.1483 5.2218 5.4416 5.8804 7.1465 5.0173 5.0375 5.1498 5.2244 5.4478 5.8912 7.1946
50 0.1757 0.2567 0.5224 0.6391 0.8972 1.2918 2.4999 0.1735 0.2587 0.5243 0.6407 0.8984 1.2932 2.5056
55 0.0000 0.0000 0.0000 0.0001 0.0017 0.0103 0.1221 0.0000 0.0000 0.0000 0.0000 0.0012 0.0083 0.0852
T 0.038 0.083 0.333 0.500 1.000 2.000 5.000 0.038 0.083 0.333 0.500 1.000 2.000 5.000
K MC GIT
45 5.0174 5.0379 5.1500 5.2212 5.4473 5.8825 7.1820 5.0173 5.0375 5.1498 5.2244 5.4478 5.8912 7.1946
50 0.1732 0.2583 0.5216 0.6370 0.8941 1.2815 2.4866 0.1735 0.2587 0.5243 0.6407 0.8984 1.2932 2.5056
55 0.0000 0.0000 0.0000 0.0000 0.0012 0.0075 0.0766 0.0000 0.0000 0.0000 0.0000 0.0012 0.0083 0.0852
K FD HP
45 5.0173 5.0374 5.1483 5.2218 5.4416 5.8804 7.1465 5.0173 5.0375 5.1498 5.2244 5.4478 5.8912 7.1946
50 0.1757 0.2567 0.5224 0.6391 0.8972 1.2918 2.4999 0.1735 0.2587 0.5243 0.6407 0.8984 1.2932 2.5056
55 0.0000 0.0000 0.0000 0.0001 0.0017 0.0103 0.1221 0.0000 0.0000 0.0000 0.0000 0.0012 0.0083 0.0852
[1]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[2]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[3]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

[4]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[5]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[6]

Morteza Fotouhi, Mohsen Yousefnezhad. Homogenization of a locally periodic time-dependent domain. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1669-1695. doi: 10.3934/cpaa.2020061

[7]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks & Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[8]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[9]

Masahiro Kubo, Noriaki Yamazaki. Periodic stability of elliptic-parabolic variational inequalities with time-dependent boundary double obstacles. Conference Publications, 2007, 2007 (Special) : 614-623. doi: 10.3934/proc.2007.2007.614

[10]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[11]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[12]

Xuming Xie. Analytic solution to an interfacial flow with kinetic undercooling in a time-dependent gap Hele-Shaw cell. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4663-4680. doi: 10.3934/dcdsb.2020307

[13]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[14]

Leonardo J. Colombo, María Emma Eyrea Irazú, Eduardo García-Toraño Andrés. A note on Hybrid Routh reduction for time-dependent Lagrangian systems. Journal of Geometric Mechanics, 2020, 12 (2) : 309-321. doi: 10.3934/jgm.2020014

[15]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[16]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[17]

Chan Liu, Jin Wen, Zhidong Zhang. Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. Inverse Problems & Imaging, 2020, 14 (6) : 1001-1024. doi: 10.3934/ipi.2020053

[18]

Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020088

[19]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[20]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

 Impact Factor: 

Metrics

  • PDF downloads (17)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]