Following an approach originally suggested by Balland in the context of the SABR model, we derive an ODE that is satisfied by normalized volatility smiles for short maturities under a rough volatility extension of the SABR model that extends also the rough Bergomi model. We solve this ODE numerically and further present a very accurate approximation to the numerical solution that we dub the rough SABR formula.
Citation: |
Figure 7. With $ \beta(s) = \sqrt{s} $ and parameters $ H = 0.05 $, $ \eta = 1 $, Monte Carlo estimates of normalized implied volatility $ \Sigma(k,\tau)/{\Sigma(0,\tau)} $ for $ \tau = 1.5,\,3,\,6 $, and $ 12 $ months are as in the legend. Dashed lines are corresponding plots of the rough SABR formula (15)
Figure 8. With parameters $ H = 0.1525 $, $ \eta = 26.66 $ and $ \rho = 0.0339 $, normalized implied volatilities $ \Sigma(y,\tau)/{\Sigma(0,\tau)} $ (five of these per expiry) are plotted against $ y = y(k,\tau) $. Here, the $ U(\tau) $ are approximated by ATM forward volatilities. Blue crosses correspond to 1 week and 2 week expirations; red crosses correspond to expirations 1 year and over. The green curve is the rough SABR formula $ f_A(y) = |y|/\sqrt{G_A(y)} $ with these parameters
[1] |
E. Alòs, J. A. León and J. Vives, On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility, Finance Stoch., 11 (2007), 571-589.
doi: 10.1007/s00780-007-0049-1.![]() ![]() ![]() |
[2] |
J. Andreasen and B. Huge, Expanded forward volatility., Risk, 1 (2013), 104-107.
![]() |
[3] |
P. Balland, Forward Smile, Presentation at Global Derivatives, Paris, 2006.
![]() |
[4] |
C. Bayer, P. Friz and J. Gatheral, Pricing under rough volatility, Quant. Finance, 16 (2016), 887-904.
doi: 10.1080/14697688.2015.1099717.![]() ![]() ![]() |
[5] |
M. Bennedsen, A. Lunde and M. S. Pakkanen, Hybrid scheme for Brownian semistationary processes, Finance Stoch., 21 (2017), 931-965.
doi: 10.1007/s00780-017-0335-5.![]() ![]() ![]() |
[6] |
H. Berestycki, J. Busca and I. Florent, Asymptotics and calibration of local volatility models, Quant. Finance, 2 (2002), 61-69.
doi: 10.1088/1469-7688/2/1/305.![]() ![]() ![]() |
[7] |
H. Berestycki, J. Busca and I. Florent, Computing the implied volatility in stochastic volatility models, Comm. Pure Appl. Math., 57 (2004), 1352-1373.
doi: 10.1002/cpa.20039.![]() ![]() ![]() |
[8] |
O. El Euch, M. Fukasawa, J. Gatheral and M. Rosenbaum, Short-term at-the-money asymptotics under stochastic volatility models, SIAM J. Financial Math., 10 (2019), 491-511.
doi: 10.1137/18M1167565.![]() ![]() ![]() |
[9] |
M. Forde and H. Zhang, Asymptotics for rough stochastic volatility models, SIAM J. Financial Math., 8 (2017), 114-145.
doi: 10.1137/15M1009330.![]() ![]() ![]() |
[10] |
M. Fukasawa, Short-time at-the-money skew and rough fractional volatility, Quant. Finance, 17 (2017), 189-198.
doi: 10.1080/14697688.2016.1197410.![]() ![]() ![]() |
[11] |
M. Fukasawa and A. Hirano, Refinement by reducing and reusing random numbers of the Hybrid scheme for Brownian semistationary processes, Quant. Finance, 21 (2021), 1127-1146.
doi: 10.1080/14697688.2020.1866209.![]() ![]() |
[12] |
M. Fukasawa, B. Horvath and P. Tankov, Hedging under rough volatility, preprint, arXiv: 2105.04073.
![]() |
[13] |
P. S. Hagan, D. Kumar, A. S. Lesniewski and D. E. Woodward, Managing smile risk, Wilmott Magazine, 1 (2002), 84-108.
![]() |
[14] |
Y. Osajima, The asymptotic expansion formula of implied volatility for dynamic SABR model and FX hybrid model., Available from: https://ssrn.com/abstract=965265.
doi: 10.2139/ssrn. 965265.![]() ![]() |
[15] |
D. Reiswich and U. Wystup, FXvolatility smile construction, Wilmott Magazine, 60 (2012), 58-69.
![]() |
The function
The function
The function
With
With
With
With
With parameters