\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A rough SABR formula

  • * Corresponding author: Jim Gatheral

    * Corresponding author: Jim Gatheral

M. Fukasawa is supported by KAKENHI 21K03369

Abstract Full Text(HTML) Figure(8) Related Papers Cited by
  • Following an approach originally suggested by Balland in the context of the SABR model, we derive an ODE that is satisfied by normalized volatility smiles for short maturities under a rough volatility extension of the SABR model that extends also the rough Bergomi model. We solve this ODE numerically and further present a very accurate approximation to the numerical solution that we dub the rough SABR formula.

    Mathematics Subject Classification: 91G30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The function $ f $ for $ H = 1/2 $ (in red) and $ H = 0 $ (in blue)

    Figure 2.  The function $ f $: numerical solutions for various values of $ H $

    Figure 3.  The function $ f $ and its approximation $ f_A $ for two values of $ \rho $. $ H = 0.05 $ is in blue, $ H = 0.25 $ is in red; solid line is the numerical solution $ f $ and dashed, the approximation $ f_A(y) $

    Figure 4.  With $ \beta(s) = s $ and parameters $ H = 0.05 $, $ \eta = 1 $, the dashed red line is the numerical solution $ f $; Monte Carlo estimates of normalized implied volatility $ \Sigma(k,\tau)/{\Sigma(0,\tau)} $ for $ \tau = 1,\,3,\,6 $, and $ 12 $ months are as in the legend

    Figure 5.  With $ \beta(s) = s $ and parameters $ H = 0.10 $, $ \eta = 1 $, the dashed red line is the numerical solution $ f $; Monte Carlo estimates of normalized implied volatility $ \Sigma(k,\tau)/{\Sigma(0,\tau)} $ for $ \tau = 1,\,3,\,6 $, and $ 12 $ months are as in the legend

    Figure 6.  With $ \beta(s) = s $ and parameters $ H = 0.20 $, $ \eta = 1 $, the dashed red line is the numerical solution $ f $; Monte Carlo estimates of normalized implied volatility $ \Sigma(k,\tau)/{\Sigma(0,\tau)} $ for $ \tau = 1,\,3,\,6 $, and $ 12 $ months are as in the legend

    Figure 7.  With $ \beta(s) = \sqrt{s} $ and parameters $ H = 0.05 $, $ \eta = 1 $, Monte Carlo estimates of normalized implied volatility $ \Sigma(k,\tau)/{\Sigma(0,\tau)} $ for $ \tau = 1.5,\,3,\,6 $, and $ 12 $ months are as in the legend. Dashed lines are corresponding plots of the rough SABR formula (15)

    Figure 8.  With parameters $ H = 0.1525 $, $ \eta = 26.66 $ and $ \rho = 0.0339 $, normalized implied volatilities $ \Sigma(y,\tau)/{\Sigma(0,\tau)} $ (five of these per expiry) are plotted against $ y = y(k,\tau) $. Here, the $ U(\tau) $ are approximated by ATM forward volatilities. Blue crosses correspond to 1 week and 2 week expirations; red crosses correspond to expirations 1 year and over. The green curve is the rough SABR formula $ f_A(y) = |y|/\sqrt{G_A(y)} $ with these parameters

  • [1] E. AlòsJ. A. León and J. Vives, On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility, Finance Stoch., 11 (2007), 571-589.  doi: 10.1007/s00780-007-0049-1.
    [2] J. Andreasen and B. Huge, Expanded forward volatility., Risk, 1 (2013), 104-107. 
    [3] P. Balland, Forward Smile, Presentation at Global Derivatives, Paris, 2006.
    [4] C. BayerP. Friz and J. Gatheral, Pricing under rough volatility, Quant. Finance, 16 (2016), 887-904.  doi: 10.1080/14697688.2015.1099717.
    [5] M. BennedsenA. Lunde and M. S. Pakkanen, Hybrid scheme for Brownian semistationary processes, Finance Stoch., 21 (2017), 931-965.  doi: 10.1007/s00780-017-0335-5.
    [6] H. BerestyckiJ. Busca and I. Florent, Asymptotics and calibration of local volatility models, Quant. Finance, 2 (2002), 61-69.  doi: 10.1088/1469-7688/2/1/305.
    [7] H. BerestyckiJ. Busca and I. Florent, Computing the implied volatility in stochastic volatility models, Comm. Pure Appl. Math., 57 (2004), 1352-1373.  doi: 10.1002/cpa.20039.
    [8] O. El EuchM. FukasawaJ. Gatheral and M. Rosenbaum, Short-term at-the-money asymptotics under stochastic volatility models, SIAM J. Financial Math., 10 (2019), 491-511.  doi: 10.1137/18M1167565.
    [9] M. Forde and H. Zhang, Asymptotics for rough stochastic volatility models, SIAM J. Financial Math., 8 (2017), 114-145.  doi: 10.1137/15M1009330.
    [10] M. Fukasawa, Short-time at-the-money skew and rough fractional volatility, Quant. Finance, 17 (2017), 189-198.  doi: 10.1080/14697688.2016.1197410.
    [11] M. Fukasawa and A. Hirano, Refinement by reducing and reusing random numbers of the Hybrid scheme for Brownian semistationary processes, Quant. Finance, 21 (2021), 1127-1146.  doi: 10.1080/14697688.2020.1866209.
    [12] M. Fukasawa, B. Horvath and P. Tankov, Hedging under rough volatility, preprint, arXiv: 2105.04073.
    [13] P. S. HaganD. KumarA. S. Lesniewski and D. E. Woodward, Managing smile risk, Wilmott Magazine, 1 (2002), 84-108. 
    [14] Y. Osajima, The asymptotic expansion formula of implied volatility for dynamic SABR model and FX hybrid model., Available from: https://ssrn.com/abstract=965265. doi: 10.2139/ssrn. 965265.
    [15] D. Reiswich and U. Wystup, FXvolatility smile construction, Wilmott Magazine, 60 (2012), 58-69. 
  • 加载中
Open Access Under a Creative Commons license

Figures(8)

SHARE

Article Metrics

HTML views(1713) PDF downloads(746) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return