doi: 10.3934/fmf.2021007
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Quadratic variation, models, applications and lessons

1. 

Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA

2. 

Derivative Product Strats, Morgan Stanley, 1585 Broadway, 5th floor, New York, NY 10036, USA

This paper is the private opinion of the authors and does not necessarily reflect the policy and views of Morgan Stanley. We also thank the reviewers for their constructive comments. Any remaining errors are our responsibility

Received  December 2020 Revised  August 2021 Early access November 2021

Time changes of Brownian motion impose restrictive jump structures in the motion of asset prices. Quadratic variations also depart from time changes. Quadratic variation options are observed to have a nonlinear exposure to risk neutral skewness. Joint Laplace Fourier transforms for quadratic variation and the stock are developed. They are used to study the multiple of the cap strike over the variance swap quote attaining a given percentage price reduction for the capped variance swap. Market prices for out-of-the-money options on variance are observed to be above those delivered by the calibrated models. Bootstrapped data and simulated paths spaces are used to study the multiple of the dynamic hedge return desired by a quadratic variation contract. It is observed that the optimized hedge multiple in the bootstrapped data is near unity. Furthermore, more generally, it is exposures to negative cubic variations in path spaces that raise variance swap prices, lower hedge multiples, increase residual risk charges and gaps to the log contract hedge. A case can be made for both, the physical process being closer to a continuous time change of Brownian motion, while simultaneously risk neutrally this may not be the case. It is recognized that in the context of discrete time there are no issues related to equivalence of probabilities.

Citation: Dilip B. Madan, King Wang. Quadratic variation, models, applications and lessons. Frontiers of Mathematical Finance, doi: 10.3934/fmf.2021007
References:
[1]

B. C. BonieceG. Didier and F. Sabzikar, On fractional Lévy processes: Tempering, sample path properties and stochastic integration, Journal of Statistical Physics, 178 (2020), 954-985.  doi: 10.1007/s10955-019-02475-1.  Google Scholar

[2]

S. Boyarchenko and S. Levendorski, Option pricing for truncated Lévy processes, International Journal of Theoretical and Applied Finance, 3 (2000), 549-552.   Google Scholar

[3]

M. Broadie and A. Jain, The effects of jumps and discrete sampling on volatility and variance swaps, International Journal of Theoretical and Applied Finance, 11 (2008), 761-797.  doi: 10.1142/S0219024908005032.  Google Scholar

[4]

P. CarrH. GemanD. Madan and M. Yor, The fine structure of asset returns: An empirical investigation, Journal of Business, 75 (2002), 305-332.   Google Scholar

[5]

P. CarrH. GemanD. Madan and M. Yor, Pricing options on realized variance, Finance and Stochastics, 9 (2005), 453-475.  doi: 10.1007/s00780-005-0155-x.  Google Scholar

[6]

P. CarrH. GemanD. B. Madan and M. Yor, Self-decomposability and option pricing, Mathematical Finance, 17 (2007), 31-57.  doi: 10.1111/j.1467-9965.2007.00293.x.  Google Scholar

[7]

P. Carr and R. Lee, Robust Replication of Volatility Derivatives, Working Paper, Courant Institute of Mathematical Sciences, New York University, 2009. Google Scholar

[8]

P. Carr and R. Lee, Hedging variance options on continuous semimartingales, Finance and Stochastics, 14 (2010), 179-207.  doi: 10.1007/s00780-009-0110-3.  Google Scholar

[9]

P. CarrT. Lee and M. Lorig, Robust replication of volatility and hybrid derivatives on jump diffusions, Mathematical Finance, 31 (2021), 1394-1422.  doi: 10.1111/mafi.12327.  Google Scholar

[10]

P. CarrR. Lee and L. Wu, Variance swaps on time-changed Lévy processes, Finance and Stochastics, 16 (2012), 335-355.  doi: 10.1007/s00780-011-0157-9.  Google Scholar

[11]

P. Carr and D. B. Madan, Towards a theory of volatility trading, Option Pricing, Interest Rates and Risk Management, Handb. Math. Finance, Cambridge Univ. Press, Cambridge, 2001, 458-476. doi: 10.1017/CBO9780511569708.013.  Google Scholar

[12]

P. Carr and and L. Wu, A tale of two indices, Journal of Derivatives, 13 (2006), 13-29.   Google Scholar

[13]

P. Carr and L. Wu, Variance Risk Premiums, Review of Financial Studies, 22 (2009), 1311-1341.   Google Scholar

[14]

M. DavisJ. Obloj and V. Raval, Arbitrage Bounds for Weighted Variance Swap Prices, Mathematical Finance, 24 (2013), 821-854.   Google Scholar

[15]

K. DemeterfiE. DermanM. Kamal and J. Zou, A guide to volatility and variance swaps, Journal of Derivatives, 4 (1999), 9-32.   Google Scholar

[16]

E. Eberlein and D. B. Madan, The Distribution of Returns at Longer Horizons, Recent Advances in Financial Engineering; Proceedings of the KIER-TMU workshop, Eds. M. Kijima, C. Hara, Y. Muromachi, H. Nakaoka and K. Nishide, World Scientific, Singapore, 2010. Google Scholar

[17]

J. Gatheral, The Volatility Surface: A Practitioner's Guide, Wiley, New York, 2006. Google Scholar

[18]

H. GemanD. Madan and M. Yor, Time changes for Lévy processes, Mathematical Finance, 11 (2001), 79-96.  doi: 10.1111/1467-9965.00108.  Google Scholar

[19]

H. GemanD. Madan and M. Yor, Stochastic volatility, jumps and hidden time changes, Finance and Stochastics, 6 (2002), 63-90.  doi: 10.1007/s780-002-8401-3.  Google Scholar

[20]

A. Y. Khintchine, Limit Laws of Sums of Independent Random Variables, ONTI, Moscow, (Russian), 1938. Google Scholar

[21]

P. Lévy, Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1937. Google Scholar

[22]

D. B. Madan and W. Schoutens, Self similarity in long horizon asset returns, Mathematical Finance, 30 (2020), 1368-1391.   Google Scholar

[23]

D. B. Madan and W. Schoutens, Arbitrage free approximations to candidate volatility surface quotations, Journal of Risk and Financial Management, 12 (2019), 69.  doi: 10.3390/jrfm12020069.  Google Scholar

[24]

D. B. Madan, W. Schoutens and K. Wang, Measuring and monitoring the efficiency of markets, International Journal of Theoretical and Applied Finance, 20 (2017), 1750051, 32 pp. doi: 10.1142/S0219024917500510.  Google Scholar

[25]

D. B. Madan and K. Wang, Asymmetries in financial returns, International Journal of Financial Engineering, 4 (2017), 1750045, 37 pp. doi: 10.1142/S2424786317500451.  Google Scholar

[26]

D. B. Madan and K. Wang, Signed infinitely divisible, signed probability models in finance, Available at SSRN, (2020a), paper no. 3489946. Google Scholar

[27]

D. B. Madan and K. Wang, Pricing and hedging option on assets with options on related assets, Available at SSRN, (2020b), paper no. 3641658. Google Scholar

[28]

D. B. Madan and K. Wang, The structure of financial returns, Finance Research Letters, 40 (2021), 101665.  doi: 10.1016/j.frl.2020.101665.  Google Scholar

[29]

D. B. Madan and K. Wang, Option implied VIX, skew and kurtosis term structure indices, Available at SSRN, (2020d), paper no. 3654563. Google Scholar

[30]

D. B. Madan and K. Wang, Pricing product options and using them to complete markets for functions of two underlying asset prices, Journal of Risk and Financial Management, 14 (2021), 355.  doi: 10.3390/jrfm14080355.  Google Scholar

[31]

D. B. Madan and K. Wang, Option surface econometrics with applications, SSRN, (2021b), paper no. 3768817. Google Scholar

[32]

D. B. Madan and M. Yor, Representing the CGMY and meixner Lévy processes as time-changed Brownian motions, Journal of Computational Finance, 12 (2008), 27-47.  doi: 10.21314/JCF.2008.181.  Google Scholar

[33]

A. Neuberger, The log contract, Journal of Portfolio Management, 20 (1994), 74-80.   Google Scholar

[34] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999.   Google Scholar
[35]

W. Zheng and Y. K. Kwok, Fourier transform algorithms for pricing and hedging discretely sampled exotic variance products and volatility derivatives under additive processes, Journal of Computational Finance, 18 (2014), 3-30.   Google Scholar

show all references

References:
[1]

B. C. BonieceG. Didier and F. Sabzikar, On fractional Lévy processes: Tempering, sample path properties and stochastic integration, Journal of Statistical Physics, 178 (2020), 954-985.  doi: 10.1007/s10955-019-02475-1.  Google Scholar

[2]

S. Boyarchenko and S. Levendorski, Option pricing for truncated Lévy processes, International Journal of Theoretical and Applied Finance, 3 (2000), 549-552.   Google Scholar

[3]

M. Broadie and A. Jain, The effects of jumps and discrete sampling on volatility and variance swaps, International Journal of Theoretical and Applied Finance, 11 (2008), 761-797.  doi: 10.1142/S0219024908005032.  Google Scholar

[4]

P. CarrH. GemanD. Madan and M. Yor, The fine structure of asset returns: An empirical investigation, Journal of Business, 75 (2002), 305-332.   Google Scholar

[5]

P. CarrH. GemanD. Madan and M. Yor, Pricing options on realized variance, Finance and Stochastics, 9 (2005), 453-475.  doi: 10.1007/s00780-005-0155-x.  Google Scholar

[6]

P. CarrH. GemanD. B. Madan and M. Yor, Self-decomposability and option pricing, Mathematical Finance, 17 (2007), 31-57.  doi: 10.1111/j.1467-9965.2007.00293.x.  Google Scholar

[7]

P. Carr and R. Lee, Robust Replication of Volatility Derivatives, Working Paper, Courant Institute of Mathematical Sciences, New York University, 2009. Google Scholar

[8]

P. Carr and R. Lee, Hedging variance options on continuous semimartingales, Finance and Stochastics, 14 (2010), 179-207.  doi: 10.1007/s00780-009-0110-3.  Google Scholar

[9]

P. CarrT. Lee and M. Lorig, Robust replication of volatility and hybrid derivatives on jump diffusions, Mathematical Finance, 31 (2021), 1394-1422.  doi: 10.1111/mafi.12327.  Google Scholar

[10]

P. CarrR. Lee and L. Wu, Variance swaps on time-changed Lévy processes, Finance and Stochastics, 16 (2012), 335-355.  doi: 10.1007/s00780-011-0157-9.  Google Scholar

[11]

P. Carr and D. B. Madan, Towards a theory of volatility trading, Option Pricing, Interest Rates and Risk Management, Handb. Math. Finance, Cambridge Univ. Press, Cambridge, 2001, 458-476. doi: 10.1017/CBO9780511569708.013.  Google Scholar

[12]

P. Carr and and L. Wu, A tale of two indices, Journal of Derivatives, 13 (2006), 13-29.   Google Scholar

[13]

P. Carr and L. Wu, Variance Risk Premiums, Review of Financial Studies, 22 (2009), 1311-1341.   Google Scholar

[14]

M. DavisJ. Obloj and V. Raval, Arbitrage Bounds for Weighted Variance Swap Prices, Mathematical Finance, 24 (2013), 821-854.   Google Scholar

[15]

K. DemeterfiE. DermanM. Kamal and J. Zou, A guide to volatility and variance swaps, Journal of Derivatives, 4 (1999), 9-32.   Google Scholar

[16]

E. Eberlein and D. B. Madan, The Distribution of Returns at Longer Horizons, Recent Advances in Financial Engineering; Proceedings of the KIER-TMU workshop, Eds. M. Kijima, C. Hara, Y. Muromachi, H. Nakaoka and K. Nishide, World Scientific, Singapore, 2010. Google Scholar

[17]

J. Gatheral, The Volatility Surface: A Practitioner's Guide, Wiley, New York, 2006. Google Scholar

[18]

H. GemanD. Madan and M. Yor, Time changes for Lévy processes, Mathematical Finance, 11 (2001), 79-96.  doi: 10.1111/1467-9965.00108.  Google Scholar

[19]

H. GemanD. Madan and M. Yor, Stochastic volatility, jumps and hidden time changes, Finance and Stochastics, 6 (2002), 63-90.  doi: 10.1007/s780-002-8401-3.  Google Scholar

[20]

A. Y. Khintchine, Limit Laws of Sums of Independent Random Variables, ONTI, Moscow, (Russian), 1938. Google Scholar

[21]

P. Lévy, Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1937. Google Scholar

[22]

D. B. Madan and W. Schoutens, Self similarity in long horizon asset returns, Mathematical Finance, 30 (2020), 1368-1391.   Google Scholar

[23]

D. B. Madan and W. Schoutens, Arbitrage free approximations to candidate volatility surface quotations, Journal of Risk and Financial Management, 12 (2019), 69.  doi: 10.3390/jrfm12020069.  Google Scholar

[24]

D. B. Madan, W. Schoutens and K. Wang, Measuring and monitoring the efficiency of markets, International Journal of Theoretical and Applied Finance, 20 (2017), 1750051, 32 pp. doi: 10.1142/S0219024917500510.  Google Scholar

[25]

D. B. Madan and K. Wang, Asymmetries in financial returns, International Journal of Financial Engineering, 4 (2017), 1750045, 37 pp. doi: 10.1142/S2424786317500451.  Google Scholar

[26]

D. B. Madan and K. Wang, Signed infinitely divisible, signed probability models in finance, Available at SSRN, (2020a), paper no. 3489946. Google Scholar

[27]

D. B. Madan and K. Wang, Pricing and hedging option on assets with options on related assets, Available at SSRN, (2020b), paper no. 3641658. Google Scholar

[28]

D. B. Madan and K. Wang, The structure of financial returns, Finance Research Letters, 40 (2021), 101665.  doi: 10.1016/j.frl.2020.101665.  Google Scholar

[29]

D. B. Madan and K. Wang, Option implied VIX, skew and kurtosis term structure indices, Available at SSRN, (2020d), paper no. 3654563. Google Scholar

[30]

D. B. Madan and K. Wang, Pricing product options and using them to complete markets for functions of two underlying asset prices, Journal of Risk and Financial Management, 14 (2021), 355.  doi: 10.3390/jrfm14080355.  Google Scholar

[31]

D. B. Madan and K. Wang, Option surface econometrics with applications, SSRN, (2021b), paper no. 3768817. Google Scholar

[32]

D. B. Madan and M. Yor, Representing the CGMY and meixner Lévy processes as time-changed Brownian motions, Journal of Computational Finance, 12 (2008), 27-47.  doi: 10.21314/JCF.2008.181.  Google Scholar

[33]

A. Neuberger, The log contract, Journal of Portfolio Management, 20 (1994), 74-80.   Google Scholar

[34] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999.   Google Scholar
[35]

W. Zheng and Y. K. Kwok, Fourier transform algorithms for pricing and hedging discretely sampled exotic variance products and volatility derivatives under additive processes, Journal of Computational Finance, 18 (2014), 3-30.   Google Scholar

Figure 1.  Graph of the quadratic and cubic risk neutral variations as inferred from the CBOE VIX and SKEW indices
Table 1.  Quadratic Variation Composition
Table 2.  Regression Coefficients of quadratic variation
Table 3.   
Table 4.  Volatility of Variance
quartilebcmycgmybcmyssdcgmyssd
1336320358353
2356341380374
3370353401387
quartilebcmycgmybcmyssdcgmyssd
1336320358353
2356341380374
3370353401387
Table 5.  Strike Multiple
quartilebcmycgmybcmyssdcgmyssd
13.442.963.943.73
23.913.54.554.26
34.273.795.274.74
quartilebcmycgmybcmyssdcgmyssd
13.442.963.943.73
23.913.54.554.26
34.273.795.274.74
Table 7.   
NumberVariable
1$vswap_{t}$
2$lcs_{t}$
3$gap_{t}$
4$rc_{t}$
5$vswapm_{t}$
6$lcsm_{t}$
7$gapm_{t}$
8$rcm_{t}$
9$h_{t}$
10$\rho _{t}$
11$qv_{t}$
12$rcs_{t}$
13$vm_{t}$
NumberVariable
1$vswap_{t}$
2$lcs_{t}$
3$gap_{t}$
4$rc_{t}$
5$vswapm_{t}$
6$lcsm_{t}$
7$gapm_{t}$
8$rcm_{t}$
9$h_{t}$
10$\rho _{t}$
11$qv_{t}$
12$rcs_{t}$
13$vm_{t}$
Table 8.  Unit Multiple
Table 9.  Optimized Multiple
Table 14.  Quadratic on Cubic Variation Regression Result
ConstantCubic variation Coefficient
Coefficient$0.0131$$-0.8715$
t-statistic$(63.88)$$(-296.06)$
RSQ$97.28\%$
ConstantCubic variation Coefficient
Coefficient$0.0131$$-0.8715$
t-statistic$(63.88)$$(-296.06)$
RSQ$97.28\%$
[1]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[2]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[3]

Yongxia Zhao, Rongming Wang, Chuancun Yin. Optimal dividends and capital injections for a spectrally positive Lévy process. Journal of Industrial & Management Optimization, 2017, 13 (1) : 1-21. doi: 10.3934/jimo.2016001

[4]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[5]

Karel Kadlec, Bohdan Maslowski. Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4039-4055. doi: 10.3934/dcdsb.2020137

[6]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[7]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[8]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[9]

Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354

[10]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[11]

Hao Chang, Jiaao Li, Hui Zhao. Robust optimal strategies of DC pension plans with stochastic volatility and stochastic income under mean-variance criteria. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021025

[12]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[13]

Françoise Pène. Self-intersections of trajectories of the Lorentz process. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4781-4806. doi: 10.3934/dcds.2014.34.4781

[14]

Adam Andersson, Felix Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4271-4294. doi: 10.3934/dcdsb.2019081

[15]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial & Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[16]

Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575

[17]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[18]

Rachel Chen, Jianqiang Hu, Yijie Peng. Simulation of Lévy-Driven models and its application in finance. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 749-765. doi: 10.3934/naco.2012.2.749

[19]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[20]

Chaman Kumar, Sotirios Sabanis. On tamed milstein schemes of SDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 421-463. doi: 10.3934/dcdsb.2017020

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]