doi: 10.3934/fmf.2021008
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Implied price processes anchored in statistical realizations

1. 

Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA

2. 

Morgan Stanley, 1585 Broadway, 5th floor, New York, NY 10036, USA

Received  August 2021 Revised  December 2021 Early access April 2022

It is observed that statistical and risk neutral densities of compound Poisson processes are unconstrained relative to each other. Continuous processes are too constrained and generally not consistent with market data. Pure jump limit laws deliver operational models simultaneously consistent with both data sets with the additional imposition of no measure change on the arbitrarily small moves. The measure change density must have a finite Hellinger distance from unity linking the two worlds. Models are constructed using the bilateral gamma and the CGMY models for the risk neutral specification. They are linked to the physical process by measure change models. The resulting models simultaneously calibrate statistical tail probabilities and option prices. The resulting models have up to eight or ten parameters permitting the study of risk reward relations at a finer level. Rewards measured by power variations of the up and down moves are observed to value negatively(positively) the even(odd) variations of their own side with the converse holding for the opposite side.

Citation: Dilip B. Madan, King Wang. Implied price processes anchored in statistical realizations. Frontiers of Mathematical Finance, doi: 10.3934/fmf.2021008
References:
[1]

K. Back, Martingale pricing, Annual Reviews of Financial Economics, 2 (2010), 235-250. 

[2]

G. BakshiD. B. Madan and G. Panayotov, Return of claims on the upside and the viability of u-shaped pricing kernels, Journal of Financial Economics, 97 (2010), 130-154. 

[3]

O. E. Barndorff-Nielsen, Processes of normal inverse Gaussian type, Finance and Stochastics, 2 (1998), 41-68. 

[4]

O. E. Barndorff-Nielsen and A. Shiryaev, Change of Time and Change of Measure, Advanced Series on Statistical Science & Applied Probability, 13. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. doi: 10.1142/7928.

[5]

F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.

[6]

D. Breeden and R. Litzenberger, Prices of state-contingent claims implicit in options prices, Journal of Business, 51 (1978), 621-651. 

[7]

P. CarrH. GemanD. B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation, Journal of Business, 75 (2002), 305-332. 

[8]

P. CarrH. GemanD. B. Madan and M. Yor, Self-decomposability and option pricing, Mathematical Finance, 17 (2007), 31-57.  doi: 10.1111/j.1467-9965.2007.00293.x.

[9]

F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Mathematische Annalen, 300 (1994), 463-520.  doi: 10.1007/BF01450498.

[10]

E. Eberlein, Application of generalized hyperbolic L évy motions to finance, Lévy Processes: Theory and Applications, (2001).

[11]

E. Eberlein and U. Keller, Hyperbolic distributions in finance, Bernoulli, 1 (1995), 281-299. 

[12]

E. Eberlein and K. Prause, The generalized hyperbolic model: Financial derivatives and risk measures, Mathematical finance–Bachelier Congress, Springer Finance, Springer, Berlin, (2002), 245–267.

[13]

J. Harrison and D. M. Kreps, Martingales and arbitrage in multiperiod securities markets, Journal of Economic Theory, 20 ((1979), 381-408.  doi: 10.1016/0022-0531(79)90043-7.

[14]

J. M. Harrison and S. R. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stochastic Processes and Their Applications, 11 (1981), 215-260. 

[15]

J. C. Jackwerth, Recovering risk aversion from option prices and realized returns, Review of Financial Studies, 13 (2000), 433-467. 

[16]

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Second edition, Grundlehren der Mathematischen Wissenschaften, 288. Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-05265-5.

[17]

E. Jondeau, S.-H. Poon and M. Rockinger, Financial Modeling Under Non-Gaussian Distributions, Springer Finance, Springer-Verlag London, Ltd., London, 2007.

[18]

A. Y. Khintchine, Limit laws of sums of independent random variables, ONTI, Moscow, (Russian), (1938).

[19]

P. Lévy, Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1937.

[20]

U. Küchler and S. Tappe, Bilateral gamma distributions and processes in financial mathematics, Stochastic Processes and Their Applications, 118 (2008), 261-283.  doi: 10.1016/j.spa.2007.04.006.

[21]

D. MadanP. Carr and E. Chang, The variance gamma process and option pricing, Review of Finance, 2 (1998), 79-105. 

[22]

D. B. Madan, W. Schoutens and K. Wang, Measuring and monitoring the efficiency of markets, International Journal of Theoretical and Applied Finance, 20 (2017), 1750051, 32 pp. doi: 10.1142/S0219024917500510.

[23]

D. B. Madan and E. Seneta, The variance gamma (VG) model for share market returns, Journal of Business, 63 (1990), 511-524. 

[24]

D. B. Madan and K. Wang, Asymmetries in financial returns, International Journal of Financial Engineering, 4 (2017), 1750045, 37 pp. doi: 10.1142/S2424786317500451.

[25]

D. B. Madan and K. Wang, Exposure valuations and their capital requirements, SSRN, (2021), 3956745.

[26]

R. C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.  doi: 10.2307/3003143.

[27]

J. Pitman and M. Yor, Infinitely divisible laws associated with hyperbolic functions, Canadian Journal of Mathematics, 55 (2003), 292-330.  doi: 10.4153/CJM-2003-014-x.

[28]

P. Protter and K. Shimbo, No arbitrage and general semimartingales, Institute of Mathematical Statistics Collections, Markov Processesand Related Topics: A Festschrift for Thomas G. Kurtz, 4 (2008), 267-283. 

[29] K. Sato, Lévy processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999. 
[30]

W. Schoutens and J. L. Teugels, Lévy processes, polynomials and martingales, Communications in Statistics: Stochastic Models, 14 (1998), 335-349. 

show all references

References:
[1]

K. Back, Martingale pricing, Annual Reviews of Financial Economics, 2 (2010), 235-250. 

[2]

G. BakshiD. B. Madan and G. Panayotov, Return of claims on the upside and the viability of u-shaped pricing kernels, Journal of Financial Economics, 97 (2010), 130-154. 

[3]

O. E. Barndorff-Nielsen, Processes of normal inverse Gaussian type, Finance and Stochastics, 2 (1998), 41-68. 

[4]

O. E. Barndorff-Nielsen and A. Shiryaev, Change of Time and Change of Measure, Advanced Series on Statistical Science & Applied Probability, 13. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. doi: 10.1142/7928.

[5]

F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.

[6]

D. Breeden and R. Litzenberger, Prices of state-contingent claims implicit in options prices, Journal of Business, 51 (1978), 621-651. 

[7]

P. CarrH. GemanD. B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation, Journal of Business, 75 (2002), 305-332. 

[8]

P. CarrH. GemanD. B. Madan and M. Yor, Self-decomposability and option pricing, Mathematical Finance, 17 (2007), 31-57.  doi: 10.1111/j.1467-9965.2007.00293.x.

[9]

F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Mathematische Annalen, 300 (1994), 463-520.  doi: 10.1007/BF01450498.

[10]

E. Eberlein, Application of generalized hyperbolic L évy motions to finance, Lévy Processes: Theory and Applications, (2001).

[11]

E. Eberlein and U. Keller, Hyperbolic distributions in finance, Bernoulli, 1 (1995), 281-299. 

[12]

E. Eberlein and K. Prause, The generalized hyperbolic model: Financial derivatives and risk measures, Mathematical finance–Bachelier Congress, Springer Finance, Springer, Berlin, (2002), 245–267.

[13]

J. Harrison and D. M. Kreps, Martingales and arbitrage in multiperiod securities markets, Journal of Economic Theory, 20 ((1979), 381-408.  doi: 10.1016/0022-0531(79)90043-7.

[14]

J. M. Harrison and S. R. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stochastic Processes and Their Applications, 11 (1981), 215-260. 

[15]

J. C. Jackwerth, Recovering risk aversion from option prices and realized returns, Review of Financial Studies, 13 (2000), 433-467. 

[16]

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Second edition, Grundlehren der Mathematischen Wissenschaften, 288. Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-05265-5.

[17]

E. Jondeau, S.-H. Poon and M. Rockinger, Financial Modeling Under Non-Gaussian Distributions, Springer Finance, Springer-Verlag London, Ltd., London, 2007.

[18]

A. Y. Khintchine, Limit laws of sums of independent random variables, ONTI, Moscow, (Russian), (1938).

[19]

P. Lévy, Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1937.

[20]

U. Küchler and S. Tappe, Bilateral gamma distributions and processes in financial mathematics, Stochastic Processes and Their Applications, 118 (2008), 261-283.  doi: 10.1016/j.spa.2007.04.006.

[21]

D. MadanP. Carr and E. Chang, The variance gamma process and option pricing, Review of Finance, 2 (1998), 79-105. 

[22]

D. B. Madan, W. Schoutens and K. Wang, Measuring and monitoring the efficiency of markets, International Journal of Theoretical and Applied Finance, 20 (2017), 1750051, 32 pp. doi: 10.1142/S0219024917500510.

[23]

D. B. Madan and E. Seneta, The variance gamma (VG) model for share market returns, Journal of Business, 63 (1990), 511-524. 

[24]

D. B. Madan and K. Wang, Asymmetries in financial returns, International Journal of Financial Engineering, 4 (2017), 1750045, 37 pp. doi: 10.1142/S2424786317500451.

[25]

D. B. Madan and K. Wang, Exposure valuations and their capital requirements, SSRN, (2021), 3956745.

[26]

R. C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.  doi: 10.2307/3003143.

[27]

J. Pitman and M. Yor, Infinitely divisible laws associated with hyperbolic functions, Canadian Journal of Mathematics, 55 (2003), 292-330.  doi: 10.4153/CJM-2003-014-x.

[28]

P. Protter and K. Shimbo, No arbitrage and general semimartingales, Institute of Mathematical Statistics Collections, Markov Processesand Related Topics: A Festschrift for Thomas G. Kurtz, 4 (2008), 267-283. 

[29] K. Sato, Lévy processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999. 
[30]

W. Schoutens and J. L. Teugels, Lévy processes, polynomials and martingales, Communications in Statistics: Stochastic Models, 14 (1998), 335-349. 

Figure 1.  Fit of Bilateral Gamma based Sato Process across maturities between a month and a quarter on SPY options as at January 2, 2010
Figure 2.  Fit of bilateral gamma based model to the observed tail probabilities as estimated from bootstrapped data for a thousand immdeiately prior returns over a gamma distributed number of days with a mean of five days and a volatility of 3 days. The estimated number of days is 8.24
Figure 3.  Fit of bilateral CGMY model to SPY options on April 4, 2017. The estimated number of days is 2.90
Figure 4.  Fit of bilateral CGMY based model to tail probabilities estimated from bootstrapped return data for a gamma distributed random number of days with a mean of five days and a volatility of three days. The estimated number of days is 2.90
Table 1.   
Distance to Unity
BG Based CGMY Based
Percentile Up Moves Down Moves Up Moves Down Moves
1 0 0.9432 0 0
5 0 1.0081 0 0
10 0 1.0840 0 0
25 0.0006 1.2174 0.9459 2.0824
50 0.0248 1.4629 1.4314 2.8091
75 0.1287 1.8979 2.2129 3.7624
90 0.2744 2.4683 2.9719 5.5502
95 0.3880 2.9356 3.8536 6.7162
99 0.8490 3.8934 40.3766 41.2440
Distance to Unity
BG Based CGMY Based
Percentile Up Moves Down Moves Up Moves Down Moves
1 0 0.9432 0 0
5 0 1.0081 0 0
10 0 1.0840 0 0
25 0.0006 1.2174 0.9459 2.0824
50 0.0248 1.4629 1.4314 2.8091
75 0.1287 1.8979 2.2129 3.7624
90 0.2744 2.4683 2.9719 5.5502
95 0.3880 2.9356 3.8536 6.7162
99 0.8490 3.8934 40.3766 41.2440
Table 2.   
Distance to Unity Regressions BG
Upside Downside
Coeff t-stat Coeff t-stat
$ Constant $ $ -0.1251 $ $ -16,84 $ $ -0.3131 $ $ -8.53 $
$ b $ $ 119.7625 $ $ 111.89 $ $ 21.3256 $ $ 18,59 $
$ c $ $ 0.0206 $ $ 7.49 $ $ 1.2206 $ $ 51.61 $
$ a $ $ 0.0035 $ $ 0.58 $ $ 0.0072 $ $ 0.22 $
$ g $ $ -0.0018 $ $ -0.40 $ $ 0.0419 $ $ 1.27 $
Distance to Unity Regressions BG
Upside Downside
Coeff t-stat Coeff t-stat
$ Constant $ $ -0.1251 $ $ -16,84 $ $ -0.3131 $ $ -8.53 $
$ b $ $ 119.7625 $ $ 111.89 $ $ 21.3256 $ $ 18,59 $
$ c $ $ 0.0206 $ $ 7.49 $ $ 1.2206 $ $ 51.61 $
$ a $ $ 0.0035 $ $ 0.58 $ $ 0.0072 $ $ 0.22 $
$ g $ $ -0.0018 $ $ -0.40 $ $ 0.0419 $ $ 1.27 $
Table 3.   
Distance to Unity Regressions CGMY
Upside Downside
Coeff t-stat Coeff t-stat
$ Constant $ $ -2.5279 $ $ -2.58 $ $ -5.8442 $ $ -4.39 $
$ C $ $ 152.77 $ $ 206.41 $ $ 128.29 $ $ 133.18 $
$ M/G $ $ 0 $ $ -0.11 $ $ 0 $ $ 5.89 $
$ Y $ $ 1.3876 $ $ 1.47 $ $ 6.4309 $ $ 4.77 $
$ a $ $ 0.5334 $ $ 0.98 $ $ 0.7 $ $ 1.32 $
$ g $ $ 0.3370 $ $ 0.99 $ $ -0.0985 $ $ -0.20 $
Distance to Unity Regressions CGMY
Upside Downside
Coeff t-stat Coeff t-stat
$ Constant $ $ -2.5279 $ $ -2.58 $ $ -5.8442 $ $ -4.39 $
$ C $ $ 152.77 $ $ 206.41 $ $ 128.29 $ $ 133.18 $
$ M/G $ $ 0 $ $ -0.11 $ $ 0 $ $ 5.89 $
$ Y $ $ 1.3876 $ $ 1.47 $ $ 6.4309 $ $ 4.77 $
$ a $ $ 0.5334 $ $ 0.98 $ $ 0.7 $ $ 1.32 $
$ g $ $ 0.3370 $ $ 0.99 $ $ -0.0985 $ $ -0.20 $
Table 4.   
Risk Reward Relations BG
Dependent Variable
Explanatory Variable mp mn mp-mn mp-mn
Constant $ -0.8953 $ $ -4.8001 $ $ 3.5352 $ $ 25.6063 $
$ -4.69 $ $ -13.62 $ $ 8.06 $ $ 13.81 $
$ s_{p}/s $ $ 2.6610 $ $ -0.0049 $ $ 2.8800 $ $ -0.7228 $
$ 120.02 $ $ 0.12 $ $ 56.38 $ $ -12.72 $
$ c_{p}/c $ $ -3.6327 $ $ -0.0206 $ $ -3.9597 $ $ 3.7913 $
$ -90.60 $ $ 0.28 $ $ -42.87 $ $ 33.29 $
$ q_{p}/q $ $ 1.8544 $ $ 0.0187 $ $ 2.0101 $ $ 2.9772 $
$ 73.54 $ $ 0.40 $ $ 34.60 $ $ 46.13 $
$ s_{n} $ $ -0.0403 $ $ 4.9494 $ $ -5.0418 $
$ -2.23 $ $ 147.94 $ $ -121.01 $
$ c_{n} $ $ 0.1079 $ $ -5.5852 $ $ 5.8038 $
$ 2.76 $ $ -77.38 $ $ 64.57 $
$ q_{n} $ $ -0.0639 $ $ 2.0908 $ $ -2.2128 $
$ -3.05 $ $ 53.98 $ $ -45.88 $
RSQ $ 0.9827 $ $ 0.9975 $ $ 0.9960 $ $ 0.9327 $
Risk Reward Relations BG
Dependent Variable
Explanatory Variable mp mn mp-mn mp-mn
Constant $ -0.8953 $ $ -4.8001 $ $ 3.5352 $ $ 25.6063 $
$ -4.69 $ $ -13.62 $ $ 8.06 $ $ 13.81 $
$ s_{p}/s $ $ 2.6610 $ $ -0.0049 $ $ 2.8800 $ $ -0.7228 $
$ 120.02 $ $ 0.12 $ $ 56.38 $ $ -12.72 $
$ c_{p}/c $ $ -3.6327 $ $ -0.0206 $ $ -3.9597 $ $ 3.7913 $
$ -90.60 $ $ 0.28 $ $ -42.87 $ $ 33.29 $
$ q_{p}/q $ $ 1.8544 $ $ 0.0187 $ $ 2.0101 $ $ 2.9772 $
$ 73.54 $ $ 0.40 $ $ 34.60 $ $ 46.13 $
$ s_{n} $ $ -0.0403 $ $ 4.9494 $ $ -5.0418 $
$ -2.23 $ $ 147.94 $ $ -121.01 $
$ c_{n} $ $ 0.1079 $ $ -5.5852 $ $ 5.8038 $
$ 2.76 $ $ -77.38 $ $ 64.57 $
$ q_{n} $ $ -0.0639 $ $ 2.0908 $ $ -2.2128 $
$ -3.05 $ $ 53.98 $ $ -45.88 $
RSQ $ 0.9827 $ $ 0.9975 $ $ 0.9960 $ $ 0.9327 $
Table 5.   
Risk Reward Relations CGMY
Dependent Variable
Explanatory Variable mp mn mp-mn mp-mn
Constant $ 30.6410 $ $ 10.3237 $ $ 5.2518 $ $ 26.5127 $
$ 5.56 $ $ 1.35 $ $ 0.69 $ $ 4.08 $
$ s_{p}/s $ $ 49.0703 $ $ 23.2615 $ $ 15.0069 $ $ 1.7536 $
$ 108.85 $ $ 37.14 $ $ 24.08 $ $ 26.56 $
$ c_{p}/c $ $ -224.1851 $ $ -128.8385 $ $ -28.0084 $ $ 10.8180 $
$ -72.01 $ $ -29.79 $ $ -6.51 $ $ 175.89 $
$ q_{p}/q $ $ 302.6475 $ $ 181.1018 $ $ 20.0436 $ $ 3.4408 $
$ 63.64 $ $ 27.41 $ $ 3.05 $ $ 19.16 $
$ f_{p}/f $ $ -126.1078 $ $ -76.1065 $ $ -5.5934 $ $ -2.1609 $
$ -60.63 $ $ -26.34 $ $ -1.95 $ $ -16.55 $
$ s_{n} $ $ -2.0138 $ $ 22.3100 $ $ -22.9098 $
$ -7.37 $ $ 58.79 $ $ -60.68 $
$ c_{n} $ $ 8.4408 $ $ -61.4901 $ $ 61.8770 $
$ 6.23 $ $ -32.67 $ $ 33.05 $
$ q_{n} $ $ -8.4234 $ $ 61.0450 $ $ -58.6393 $
$ -4.30 $ $ 22.45 $ $ -21.67 $
$ f_{n} $ $ 2.6993 $ $ -20.8879 $ $ 19.2105 $
$ 3.19 $ $ -17.75 $ $ 16.41 $
RSQ $ .9903 $ $ .9729 $ $ .7313 $ $ .7530 $
Risk Reward Relations CGMY
Dependent Variable
Explanatory Variable mp mn mp-mn mp-mn
Constant $ 30.6410 $ $ 10.3237 $ $ 5.2518 $ $ 26.5127 $
$ 5.56 $ $ 1.35 $ $ 0.69 $ $ 4.08 $
$ s_{p}/s $ $ 49.0703 $ $ 23.2615 $ $ 15.0069 $ $ 1.7536 $
$ 108.85 $ $ 37.14 $ $ 24.08 $ $ 26.56 $
$ c_{p}/c $ $ -224.1851 $ $ -128.8385 $ $ -28.0084 $ $ 10.8180 $
$ -72.01 $ $ -29.79 $ $ -6.51 $ $ 175.89 $
$ q_{p}/q $ $ 302.6475 $ $ 181.1018 $ $ 20.0436 $ $ 3.4408 $
$ 63.64 $ $ 27.41 $ $ 3.05 $ $ 19.16 $
$ f_{p}/f $ $ -126.1078 $ $ -76.1065 $ $ -5.5934 $ $ -2.1609 $
$ -60.63 $ $ -26.34 $ $ -1.95 $ $ -16.55 $
$ s_{n} $ $ -2.0138 $ $ 22.3100 $ $ -22.9098 $
$ -7.37 $ $ 58.79 $ $ -60.68 $
$ c_{n} $ $ 8.4408 $ $ -61.4901 $ $ 61.8770 $
$ 6.23 $ $ -32.67 $ $ 33.05 $
$ q_{n} $ $ -8.4234 $ $ 61.0450 $ $ -58.6393 $
$ -4.30 $ $ 22.45 $ $ -21.67 $
$ f_{n} $ $ 2.6993 $ $ -20.8879 $ $ 19.2105 $
$ 3.19 $ $ -17.75 $ $ 16.41 $
RSQ $ .9903 $ $ .9729 $ $ .7313 $ $ .7530 $
[1]

Zhen-Hui Bu, Zhi-Cheng Wang. Global stability of V-shaped traveling fronts in combustion and degenerate monostable equations. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2251-2286. doi: 10.3934/dcds.2018093

[2]

Mitsunori Nara, Masaharu Taniguchi. Convergence to V-shaped fronts in curvature flows for spatially non-decaying initial perturbations. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 137-156. doi: 10.3934/dcds.2006.16.137

[3]

Tetsuya Ishiwata. Motion of polygonal curved fronts by crystalline motion: v-shaped solutions and eventual monotonicity. Conference Publications, 2011, 2011 (Special) : 717-726. doi: 10.3934/proc.2011.2011.717

[4]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial and Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[5]

Xingchun Wang, Yongjin Wang. Hedging strategies for discretely monitored Asian options under Lévy processes. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1209-1224. doi: 10.3934/jimo.2014.10.1209

[6]

Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001

[7]

A. Settati, A. Lahrouz, Mohamed El Fatini, A. El Haitami, M. El Jarroudi, M. Erriani. A Markovian switching diffusion for an SIS model incorporating Lévy processes. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022072

[8]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[9]

Wei Zhong, Yongxia Zhao, Ping Chen. Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2639-2667. doi: 10.3934/jimo.2020087

[10]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial and Management Optimization, 2022, 18 (2) : 795-823. doi: 10.3934/jimo.2020179

[11]

Huijie Qiao, Jiang-Lun Wu. Path independence of the additive functionals for stochastic differential equations driven by G-lévy processes. Probability, Uncertainty and Quantitative Risk, , () : -. doi: 10.3934/puqr.2022007

[12]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090

[13]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic and Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[14]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[15]

Dong Han Kim, Luca Marchese, Stefano Marmi. Long hitting time for translation flows and L-shaped billiards. Journal of Modern Dynamics, 2019, 14: 291-353. doi: 10.3934/jmd.2019011

[16]

Adam Andersson, Felix Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4271-4294. doi: 10.3934/dcdsb.2019081

[17]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[18]

Yongxia Zhao, Rongming Wang, Chuancun Yin. Optimal dividends and capital injections for a spectrally positive Lévy process. Journal of Industrial and Management Optimization, 2017, 13 (1) : 1-21. doi: 10.3934/jimo.2016001

[19]

Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575

[20]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

 Impact Factor: 

Metrics

  • PDF downloads (21)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]