
-
Previous Article
Making no-arbitrage discounting-invariant: A new FTAP version beyond NFLVR and NUPBR
- FMF Home
- This Issue
-
Next Article
Quadratic variation, models, applications and lessons
Acceptability maximization
1. | Vienna University of Economics and Business, Institute for Statistics and Mathematics, Vienna A-1020, Austria |
2. | Illinois Institute of Technology, Department of Applied Mathematics, 10 W 32nd Str, Building RE, Room 220, Chicago, IL 60616, USA |
The aim of this paper is to study the optimal investment problem by using coherent acceptability indices (CAIs) as a tool to measure the portfolio performance. We call this problem the acceptability maximization. First, we study the one-period (static) case, and propose a numerical algorithm that approximates the original problem by a sequence of risk minimization problems. The results are applied to several important CAIs, such as the gain-to-loss ratio, the risk-adjusted return on capital and the tail-value-at-risk based CAI. In the second part of the paper we investigate the acceptability maximization in a discrete time dynamic setup. Using robust representations of CAIs in terms of a family of dynamic coherent risk measures (DCRMs), we establish an intriguing dichotomy: if the corresponding family of DCRMs is recursive (i.e. strongly time consistent) and assuming some recursive structure of the market model, then the acceptability maximization problem reduces to just a one period problem and the maximal acceptability is constant across all states and times. On the other hand, if the family of DCRMs is not recursive, which is often the case, then the acceptability maximization problem ordinarily is a time-inconsistent stochastic control problem, similar to the classical mean-variance criteria. To overcome this form of time-inconsistency, we adapt to our setup the set-valued Bellman's principle recently proposed in [
References:
[1] |
B. Acciaio, H. Föllmer and I. Penner,
Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles, Finance and Stochastics, 16 (2012), 669-709.
doi: 10.1007/s00780-012-0176-1. |
[2] |
B. Acciaio and I. Penner, Dynamic risk measures, Advanced Mathematical Methods for Finance, Springer, Heidelberg, (2011), 1–34.
doi: 10.1007/978-3-642-18412-3_1. |
[3] |
V. Agarwal and N. Y. Naik,
Risks and portfolio decisions involving hedge funds, The Review of Financial Studies, 17 (2004), 63-98.
doi: 10.1093/rfs/hhg044. |
[4] |
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath,
Coherent measures of risk, Math. Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068. |
[5] |
F. Bellini and E. Di Bernardino,
Risk management with expectiles, European Journal of Finance, 23 (2015), 487-506.
doi: 10.1080/1351847X.2015.1052150. |
[6] |
A. Bernardo and O. Ledoit,
Gain, loss, and asset pricing, Journal of Political Economy, 108 (2000), 144-172.
doi: 10.1086/262114. |
[7] |
S. Biagini and J. Bion-Nadal,
Dynamic quasi-concave performance measures, Journal of Mathematical Economics, 55 (2014), 143-153.
doi: 10.1016/j.jmateco.2014.02.007. |
[8] |
T. R. Bielecki, I. Cialenco and T. Chen,
Dynamic conic finance via backward stochastic difference equations, SIAM J. Finan. Math., 6 (2015), 1068-1122.
doi: 10.1137/141002013. |
[9] |
T. R. Bielecki, I. Cialenco, S. Drapeau and M. Karliczek,
Dynamic assessment indices, Stochastics, 88 (2016)), 1-44.
doi: 10.1080/17442508.2015.1026346. |
[10] |
T. R. Bielecki, I. Cialenco, I. Iyigunler and R. Rodriguez, Dynamic conic finance: Pricing and hedging via dynamic coherent acceptability indices with transaction costs, International Journal of Theoretical and Applied Finance, 16 (2103), 1350002, 36 pp.
doi: 10.1142/S0219024913500027. |
[11] |
T. R. Bielecki, I. Cialenco and M. Pitera, A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective, Probability, Uncertainty and Quantitative Risk, 2 (2017), Paper No. 3, 52 pp.
doi: 10.1186/s41546-017-0012-9. |
[12] |
T. R. Bielecki, I. Cialenco and M. Pitera,
A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time, Mathematics of Operations Research, 43 (2018), 204-221.
doi: 10.1287/moor.2017.0858. |
[13] |
T. R. Bielecki, I. Cialenco and Z. Zhang,
Dynamic coherent acceptability indices and their applications to finance, Mathematical Finance, 24 (2014), 411-441.
doi: 10.1111/j.1467-9965.2012.00524.x. |
[14] |
A. Biglova, S. Ortobelli, S. T. Rachev and S. Stoyanov,
Different approaches to risk estimation in portfolio theory, The Journal of Portfolio Management, 31 (2004), 103-112.
doi: 10.3905/jpm.2004.443328. |
[15] |
P. Cheridito and E. Kromer,
Reward-risk ratio, Journal of Investment Strategies, 3 (2013), 1-16.
doi: 10.2139/ssrn.2144185. |
[16] |
P. Cheridito and M. Stadje,
Time-inconsistency of VaR and time-consistent alternatives, Finance Research Letters, 6 (2009), 40-46.
doi: 10.1016/j.frl.2008.10.002. |
[17] |
A. Cherny and D. B. Madan,
New measures for performance evaluation, The Review of Financial Studies, 22 (2009), 2571-2606.
|
[18] |
E. Eberlein and D. B. Madan,
Hedge fund performance: sources and measures, Int. J. Theor. Appl. Finance, 12 (2009), 267-282.
doi: 10.1142/S0219024909005282. |
[19] |
E. Eberlein and D. B. Madan, Maximally acceptable portfolios, Inspired by Finance, Springer, Cham, (2014), 257–272.
doi: 10.1007/978-3-319-02069-3_11. |
[20] |
W. N. Goetzmann, J. E. Ingersoll, M. I. Spiegel and I. Welch, Sharpening Sharpe ratios, NBER Working Paper No. 9116, (2002), 51 pp. |
[21] |
C. Karnam, J. Ma and J. Zhang,
Dynamic approaches for some time-inconsistent optimization problems, Ann. Appl. Probab., 27 (2017), 3435-3477.
doi: 10.1214/17-AAP1284. |
[22] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 519-531.
doi: 10.1287/mnsc.37.5.519. |
[23] |
G. Kováčová and B. Rudloff,
Time consistency of the mean-risk problem, Operations Research, 69 (2021), 1100-1117.
doi: 10.1287/opre.2020.2002. |
[24] |
A. Löhne and B. Weißing,
Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming, Mathematical Methods of Operations Research, 84 (2016), 411-426.
doi: 10.1007/s00186-016-0554-0. |
[25] |
D. Madan and W. Schoutens, Applied Conic Finance, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316585108.![]() ![]() ![]() |
[26] |
R. D. Martin, S. Z. Rachev and F. Siboulet,
Phi-alpha optimal portfolios and extreme risk management, The Best of Wilmott 1: Incorporating the Quantitative Finance Review, 1 (2003), 223.
|
[27] |
S. Ortobelli, A. Biglova, S. Stoyanov, S. Z. Rachev and F. Fabozzi,
A comparison among performance measures in portfolio theory, IFAC Proceedings Volumes, 16th IFAC World Congress, 38 (2005), 1-5.
doi: 10.3182/20050703-6-CZ-1902.02236. |
[28] |
F. Riedel,
Dynamic coherent risk measures, Stochastic Process. Appl., 112 (2004), 185-200.
doi: 10.1016/j.spa.2004.03.004. |
[29] |
E. Rosazza Gianin and E. Sgarra,
Acceptability indexes via $g$-expectations: An application to liquidity risk, Mathematics and Financial Economics, 7 (2013), 457-475.
doi: 10.1007/s11579-013-0097-6. |
[30] |
H. Shalit and S. Yitzhaki,
Mean-Gini, portfolio theory, and the pricing of risky assets, Journal of Finance, 39 (1984), 1449-1468.
doi: 10.1111/j.1540-6261.1984.tb04917.x. |
[31] |
W. F. Sharpe,
Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, 19 (1964), 425-442.
doi: 10.1111/j.1540-6261.1964.tb02865.x. |
[32] |
F. A. Sortino and S. Satchell, Managing Downside Risk in Financial Markets, Butterworth-Heinemann, 2001. |
[33] |
M. R. Young,
A minimax portfolio selection rule with linear programming solution, Management Science, 44 (1998), 595-741.
doi: 10.1287/mnsc.44.5.673. |
show all references
References:
[1] |
B. Acciaio, H. Föllmer and I. Penner,
Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles, Finance and Stochastics, 16 (2012), 669-709.
doi: 10.1007/s00780-012-0176-1. |
[2] |
B. Acciaio and I. Penner, Dynamic risk measures, Advanced Mathematical Methods for Finance, Springer, Heidelberg, (2011), 1–34.
doi: 10.1007/978-3-642-18412-3_1. |
[3] |
V. Agarwal and N. Y. Naik,
Risks and portfolio decisions involving hedge funds, The Review of Financial Studies, 17 (2004), 63-98.
doi: 10.1093/rfs/hhg044. |
[4] |
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath,
Coherent measures of risk, Math. Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068. |
[5] |
F. Bellini and E. Di Bernardino,
Risk management with expectiles, European Journal of Finance, 23 (2015), 487-506.
doi: 10.1080/1351847X.2015.1052150. |
[6] |
A. Bernardo and O. Ledoit,
Gain, loss, and asset pricing, Journal of Political Economy, 108 (2000), 144-172.
doi: 10.1086/262114. |
[7] |
S. Biagini and J. Bion-Nadal,
Dynamic quasi-concave performance measures, Journal of Mathematical Economics, 55 (2014), 143-153.
doi: 10.1016/j.jmateco.2014.02.007. |
[8] |
T. R. Bielecki, I. Cialenco and T. Chen,
Dynamic conic finance via backward stochastic difference equations, SIAM J. Finan. Math., 6 (2015), 1068-1122.
doi: 10.1137/141002013. |
[9] |
T. R. Bielecki, I. Cialenco, S. Drapeau and M. Karliczek,
Dynamic assessment indices, Stochastics, 88 (2016)), 1-44.
doi: 10.1080/17442508.2015.1026346. |
[10] |
T. R. Bielecki, I. Cialenco, I. Iyigunler and R. Rodriguez, Dynamic conic finance: Pricing and hedging via dynamic coherent acceptability indices with transaction costs, International Journal of Theoretical and Applied Finance, 16 (2103), 1350002, 36 pp.
doi: 10.1142/S0219024913500027. |
[11] |
T. R. Bielecki, I. Cialenco and M. Pitera, A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective, Probability, Uncertainty and Quantitative Risk, 2 (2017), Paper No. 3, 52 pp.
doi: 10.1186/s41546-017-0012-9. |
[12] |
T. R. Bielecki, I. Cialenco and M. Pitera,
A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time, Mathematics of Operations Research, 43 (2018), 204-221.
doi: 10.1287/moor.2017.0858. |
[13] |
T. R. Bielecki, I. Cialenco and Z. Zhang,
Dynamic coherent acceptability indices and their applications to finance, Mathematical Finance, 24 (2014), 411-441.
doi: 10.1111/j.1467-9965.2012.00524.x. |
[14] |
A. Biglova, S. Ortobelli, S. T. Rachev and S. Stoyanov,
Different approaches to risk estimation in portfolio theory, The Journal of Portfolio Management, 31 (2004), 103-112.
doi: 10.3905/jpm.2004.443328. |
[15] |
P. Cheridito and E. Kromer,
Reward-risk ratio, Journal of Investment Strategies, 3 (2013), 1-16.
doi: 10.2139/ssrn.2144185. |
[16] |
P. Cheridito and M. Stadje,
Time-inconsistency of VaR and time-consistent alternatives, Finance Research Letters, 6 (2009), 40-46.
doi: 10.1016/j.frl.2008.10.002. |
[17] |
A. Cherny and D. B. Madan,
New measures for performance evaluation, The Review of Financial Studies, 22 (2009), 2571-2606.
|
[18] |
E. Eberlein and D. B. Madan,
Hedge fund performance: sources and measures, Int. J. Theor. Appl. Finance, 12 (2009), 267-282.
doi: 10.1142/S0219024909005282. |
[19] |
E. Eberlein and D. B. Madan, Maximally acceptable portfolios, Inspired by Finance, Springer, Cham, (2014), 257–272.
doi: 10.1007/978-3-319-02069-3_11. |
[20] |
W. N. Goetzmann, J. E. Ingersoll, M. I. Spiegel and I. Welch, Sharpening Sharpe ratios, NBER Working Paper No. 9116, (2002), 51 pp. |
[21] |
C. Karnam, J. Ma and J. Zhang,
Dynamic approaches for some time-inconsistent optimization problems, Ann. Appl. Probab., 27 (2017), 3435-3477.
doi: 10.1214/17-AAP1284. |
[22] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 519-531.
doi: 10.1287/mnsc.37.5.519. |
[23] |
G. Kováčová and B. Rudloff,
Time consistency of the mean-risk problem, Operations Research, 69 (2021), 1100-1117.
doi: 10.1287/opre.2020.2002. |
[24] |
A. Löhne and B. Weißing,
Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming, Mathematical Methods of Operations Research, 84 (2016), 411-426.
doi: 10.1007/s00186-016-0554-0. |
[25] |
D. Madan and W. Schoutens, Applied Conic Finance, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316585108.![]() ![]() ![]() |
[26] |
R. D. Martin, S. Z. Rachev and F. Siboulet,
Phi-alpha optimal portfolios and extreme risk management, The Best of Wilmott 1: Incorporating the Quantitative Finance Review, 1 (2003), 223.
|
[27] |
S. Ortobelli, A. Biglova, S. Stoyanov, S. Z. Rachev and F. Fabozzi,
A comparison among performance measures in portfolio theory, IFAC Proceedings Volumes, 16th IFAC World Congress, 38 (2005), 1-5.
doi: 10.3182/20050703-6-CZ-1902.02236. |
[28] |
F. Riedel,
Dynamic coherent risk measures, Stochastic Process. Appl., 112 (2004), 185-200.
doi: 10.1016/j.spa.2004.03.004. |
[29] |
E. Rosazza Gianin and E. Sgarra,
Acceptability indexes via $g$-expectations: An application to liquidity risk, Mathematics and Financial Economics, 7 (2013), 457-475.
doi: 10.1007/s11579-013-0097-6. |
[30] |
H. Shalit and S. Yitzhaki,
Mean-Gini, portfolio theory, and the pricing of risky assets, Journal of Finance, 39 (1984), 1449-1468.
doi: 10.1111/j.1540-6261.1984.tb04917.x. |
[31] |
W. F. Sharpe,
Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, 19 (1964), 425-442.
doi: 10.1111/j.1540-6261.1964.tb02865.x. |
[32] |
F. A. Sortino and S. Satchell, Managing Downside Risk in Financial Markets, Butterworth-Heinemann, 2001. |
[33] |
M. R. Young,
A minimax portfolio selection rule with linear programming solution, Management Science, 44 (1998), 595-741.
doi: 10.1287/mnsc.44.5.673. |



![]() |
||||||||||||||||
Panel A: Return matrix R in the toy market model (two assets and four states of the world). | ||||||||||||||||
AIT | GLR | RAROC | ||||||||||||||
Iter | Iter | Iter | ||||||||||||||
Step 1 | Step 1 | Step 1 | ||||||||||||||
+ | + | |||||||||||||||
+ | + | + | ||||||||||||||
Step 2 | ||||||||||||||||
Step 2 | Step 2 | |||||||||||||||
+ | ||||||||||||||||
+ | + | + | ||||||||||||||
+ | ||||||||||||||||
+ | + | + | ||||||||||||||
+ | + | + | ||||||||||||||
+ | + | |||||||||||||||
+ | + | |||||||||||||||
+ | + | |||||||||||||||
+ | + | + | ||||||||||||||
+ | + | |||||||||||||||
+ | ||||||||||||||||
Panel B: Iterations of Algorithm 1 with input parameters |
![]() |
||||||||||||||||
Panel A: Return matrix R in the toy market model (two assets and four states of the world). | ||||||||||||||||
AIT | GLR | RAROC | ||||||||||||||
Iter | Iter | Iter | ||||||||||||||
Step 1 | Step 1 | Step 1 | ||||||||||||||
+ | + | |||||||||||||||
+ | + | + | ||||||||||||||
Step 2 | ||||||||||||||||
Step 2 | Step 2 | |||||||||||||||
+ | ||||||||||||||||
+ | + | + | ||||||||||||||
+ | ||||||||||||||||
+ | + | + | ||||||||||||||
+ | + | + | ||||||||||||||
+ | + | |||||||||||||||
+ | + | |||||||||||||||
+ | + | |||||||||||||||
+ | + | + | ||||||||||||||
+ | + | |||||||||||||||
+ | ||||||||||||||||
Panel B: Iterations of Algorithm 1 with input parameters |
Modified algorithm for GLR | Mixed algorithm for GLR | Zero-level algorithm for GLR | |||||||||||||||||
Iter | Iter | Iter | |||||||||||||||||
Step 1 | Step 1 | Step 1 | |||||||||||||||||
+ | + | ||||||||||||||||||
+ | |||||||||||||||||||
Step 2 | Step 2 | Step 2 | |||||||||||||||||
+ | |||||||||||||||||||
+ | + | + | |||||||||||||||||
+ | Iter | + | |||||||||||||||||
+ | + | ||||||||||||||||||
+ | |||||||||||||||||||
+ | + | ||||||||||||||||||
+ | + | + | |||||||||||||||||
+ | + | ||||||||||||||||||
+ | + | + | |||||||||||||||||
+ | + | ||||||||||||||||||
+ | |||||||||||||||||||
+ | + | ||||||||||||||||||
+ | + | + | |||||||||||||||||
+ | + | ||||||||||||||||||
+ | + | + | |||||||||||||||||
+ | |||||||||||||||||||
+ | |||||||||||||||||||
+ | |||||||||||||||||||
Modified algorithm for GLR | Mixed algorithm for GLR | Zero-level algorithm for GLR | |||||||||||||||||
Iter | Iter | Iter | |||||||||||||||||
Step 1 | Step 1 | Step 1 | |||||||||||||||||
+ | + | ||||||||||||||||||
+ | |||||||||||||||||||
Step 2 | Step 2 | Step 2 | |||||||||||||||||
+ | |||||||||||||||||||
+ | + | + | |||||||||||||||||
+ | Iter | + | |||||||||||||||||
+ | + | ||||||||||||||||||
+ | |||||||||||||||||||
+ | + | ||||||||||||||||||
+ | + | + | |||||||||||||||||
+ | + | ||||||||||||||||||
+ | + | + | |||||||||||||||||
+ | + | ||||||||||||||||||
+ | |||||||||||||||||||
+ | + | ||||||||||||||||||
+ | + | + | |||||||||||||||||
+ | + | ||||||||||||||||||
+ | + | + | |||||||||||||||||
+ | |||||||||||||||||||
+ | |||||||||||||||||||
+ | |||||||||||||||||||
Panel A: |
|||||||
Step 1 | Step 2 | Run time | |||||
Iter | Iter | (s) | |||||
5 | 18 | 6.1e-05 | 3.78 | ||||
2 | 18 | 7.6e-05 | 3.40 | ||||
4 | 18 | 9.5e-05 | 3.56 | ||||
5 | 31 | 7.5e-09 | 6.22 | ||||
15 | no Step 2 | 1.88 | |||||
17 | 18 | 6.1e-05 | 4.67 | ||||
15 | no Step 2 | 4.61 | |||||
16 | 18 | 6.1e-05 | 7.15 | ||||
Panel B: |
|||||||
Step 1 | Step 2 | Run time | |||||
Iter | Iter | (s) | |||||
9 | 22 | 6.1e-05 | 21.53 | ||||
5 | 21 | 7.6e-05 | 17.27 | ||||
2 | 21 | 9.5e-05 | 15.74 | ||||
9 | 35 | 7.5e-09 | 30.40 | ||||
15 | no Step 2 | 6.50 | |||||
18 | 22 | 6.1e-05 | 23.91 | ||||
15 | no Step 2 | 13.41 | |||||
20 | 22 | 6.1e-05 | 30.27 | ||||
Panel C: |
|||||||
Step 1 | Step 2 | Run time | |||||
Iter | Iter | (s) | |||||
2 | 15 | 6.1e-05 | 7.20 | ||||
4 | 15 | 7.6e-05 | 9.41 | ||||
8 | 14 | 9.4e-05 | 12.84 | ||||
2 | 28 | 7.5e-09 | 11.07 | ||||
15 | no Step 2 | 10.55 | |||||
20 | 15 | 6.1e-05 | 19.59 | ||||
15 | no Step 2 | 7.04 | |||||
18 | 15 | 6.1e-05 | 13.41 |
Panel A: |
|||||||
Step 1 | Step 2 | Run time | |||||
Iter | Iter | (s) | |||||
5 | 18 | 6.1e-05 | 3.78 | ||||
2 | 18 | 7.6e-05 | 3.40 | ||||
4 | 18 | 9.5e-05 | 3.56 | ||||
5 | 31 | 7.5e-09 | 6.22 | ||||
15 | no Step 2 | 1.88 | |||||
17 | 18 | 6.1e-05 | 4.67 | ||||
15 | no Step 2 | 4.61 | |||||
16 | 18 | 6.1e-05 | 7.15 | ||||
Panel B: |
|||||||
Step 1 | Step 2 | Run time | |||||
Iter | Iter | (s) | |||||
9 | 22 | 6.1e-05 | 21.53 | ||||
5 | 21 | 7.6e-05 | 17.27 | ||||
2 | 21 | 9.5e-05 | 15.74 | ||||
9 | 35 | 7.5e-09 | 30.40 | ||||
15 | no Step 2 | 6.50 | |||||
18 | 22 | 6.1e-05 | 23.91 | ||||
15 | no Step 2 | 13.41 | |||||
20 | 22 | 6.1e-05 | 30.27 | ||||
Panel C: |
|||||||
Step 1 | Step 2 | Run time | |||||
Iter | Iter | (s) | |||||
2 | 15 | 6.1e-05 | 7.20 | ||||
4 | 15 | 7.6e-05 | 9.41 | ||||
8 | 14 | 9.4e-05 | 12.84 | ||||
2 | 28 | 7.5e-09 | 11.07 | ||||
15 | no Step 2 | 10.55 | |||||
20 | 15 | 6.1e-05 | 19.59 | ||||
15 | no Step 2 | 7.04 | |||||
18 | 15 | 6.1e-05 | 13.41 |
Panel A: |
|||||||||
lgorithm | Step 1 | Bisection on |
Bisection on |
Run time | |||||
Iter | Iter | Iter | (s) | ||||||
Original | 5 | 18 | 6.1e-05 | 3.32 | |||||
Modified | 2 | 23 | 8.3e-05 | 3.67 | |||||
Mixed | 2 | 5 | 18 | 6.1e-05 | 3.90 | ||||
Zero level | 3 | 18 | 5.9e-05 | 2.96 | |||||
Original | 5 | 18 | 6.1e-05 | 4.89 | |||||
Modified | 2 | 23 | 8.5e-05 | 5.11 | |||||
Mixed | 2 | 5 | 18 | 6.1e-05 | 5.09 | ||||
Zero level | 3 | 18 | 5.1e-05 | 4.36 | |||||
Panel B: |
|||||||||
Algorithm | Step 1 | Bisection on |
Bisection on |
Run time | |||||
Iter | Iter | Iter | (s) | ||||||
Original | 9 | 22 | 6.1e-05 | 19.45 | |||||
Modified | 2 | 29 | 7.4e-05 | 18.42 | |||||
Mixed | 2 | 8 | 22 | 6.1e-05 | 19.75 | ||||
Zero level | 3 | 22 | 6.7e-05 | 14.54 | |||||
Original | 9 | 22 | 6.1e-05 | 39.56 | |||||
Modified | 2 | 29 | 7.9e-05 | 40.85 | |||||
Mixed | 2 | 8 | 22 | 6.1e-05 | 41.66 | ||||
Zero level | 3 | 22 | 6.8e-05 | 32.17 | |||||
Panel C: |
|||||||||
Algorithm | Step 1 | Bisection on |
Bisection on |
Run time | |||||
Iter | Iter | Iter | (s) | ||||||
Original | 2 | 15 | 6.1e-05 | 5.88 | |||||
Modified | 2 | 18 | 6.0e-05 | 5.88 | |||||
Mixed | 2 | 2 | 15 | 6.1e-05 | 5.62 | ||||
Zero level | 2 | 15 | 9.1e-05 | 5.53 | |||||
Original | 2 | 15 | 6.1e-05 | 6.91 | |||||
Modified | 2 | 18 | 6.3e-05 | 8.00 | |||||
Mixed | 2 | 3 | 18 | 6.1e-05 | 8.12 | ||||
Zero level | 2 | 15 | 9.4e-05 | 7.04 |
Panel A: |
|||||||||
lgorithm | Step 1 | Bisection on |
Bisection on |
Run time | |||||
Iter | Iter | Iter | (s) | ||||||
Original | 5 | 18 | 6.1e-05 | 3.32 | |||||
Modified | 2 | 23 | 8.3e-05 | 3.67 | |||||
Mixed | 2 | 5 | 18 | 6.1e-05 | 3.90 | ||||
Zero level | 3 | 18 | 5.9e-05 | 2.96 | |||||
Original | 5 | 18 | 6.1e-05 | 4.89 | |||||
Modified | 2 | 23 | 8.5e-05 | 5.11 | |||||
Mixed | 2 | 5 | 18 | 6.1e-05 | 5.09 | ||||
Zero level | 3 | 18 | 5.1e-05 | 4.36 | |||||
Panel B: |
|||||||||
Algorithm | Step 1 | Bisection on |
Bisection on |
Run time | |||||
Iter | Iter | Iter | (s) | ||||||
Original | 9 | 22 | 6.1e-05 | 19.45 | |||||
Modified | 2 | 29 | 7.4e-05 | 18.42 | |||||
Mixed | 2 | 8 | 22 | 6.1e-05 | 19.75 | ||||
Zero level | 3 | 22 | 6.7e-05 | 14.54 | |||||
Original | 9 | 22 | 6.1e-05 | 39.56 | |||||
Modified | 2 | 29 | 7.9e-05 | 40.85 | |||||
Mixed | 2 | 8 | 22 | 6.1e-05 | 41.66 | ||||
Zero level | 3 | 22 | 6.8e-05 | 32.17 | |||||
Panel C: |
|||||||||
Algorithm | Step 1 | Bisection on |
Bisection on |
Run time | |||||
Iter | Iter | Iter | (s) | ||||||
Original | 2 | 15 | 6.1e-05 | 5.88 | |||||
Modified | 2 | 18 | 6.0e-05 | 5.88 | |||||
Mixed | 2 | 2 | 15 | 6.1e-05 | 5.62 | ||||
Zero level | 2 | 15 | 9.1e-05 | 5.53 | |||||
Original | 2 | 15 | 6.1e-05 | 6.91 | |||||
Modified | 2 | 18 | 6.3e-05 | 8.00 | |||||
Mixed | 2 | 3 | 18 | 6.1e-05 | 8.12 | ||||
Zero level | 2 | 15 | 9.4e-05 | 7.04 |
[1] |
Tomasz R. Bielecki, Igor Cialenco, Marcin Pitera. A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 3-. doi: 10.1186/s41546-017-0012-9 |
[2] |
Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115 |
[3] |
Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087 |
[4] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[5] |
Kendry J. Vivas, Víctor F. Sirvent. Metric entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022010 |
[6] |
Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327 |
[7] |
Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial and Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1 |
[8] |
Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246 |
[9] |
Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations and Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022 |
[10] |
Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548 |
[11] |
Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309 |
[12] |
Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control and Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435 |
[13] |
Michele Campiti. Korovkin-type approximation of set-valued and vector-valued functions. Mathematical Foundations of Computing, 2022, 5 (3) : 231-239. doi: 10.3934/mfc.2021032 |
[14] |
Nguyen Duc Vuong, Tran Ngoc Thang. Optimizing over Pareto set of semistrictly quasiconcave vector maximization and application to stochastic portfolio selection. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022029 |
[15] |
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 |
[16] |
Kuei-Hu Chang. A novel risk ranking method based on the single valued neutrosophic set. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2237-2253. doi: 10.3934/jimo.2021065 |
[17] |
Linyi Qian, Lyu Chen, Zhuo Jin, Rongming Wang. Optimal liability ratio and dividend payment strategies under catastrophic risk. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1443-1461. doi: 10.3934/jimo.2018015 |
[18] |
Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35 |
[19] |
Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567 |
[20] |
Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial and Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]