[1]
|
B. Acciaio, C. Fontana and C. Kardaras, Arbitrage of the first kind and filtration enlargements in semimartingale financial models, Stochastic Process. Appl., 126 (2016), 1761-1784.
doi: 10.1016/j.spa.2015.12.004.
|
[2]
|
A. Aksamit, T. Choulli, J. Deng and M. Jeanblanc, No-arbitrage up to random horizon for quasi-left-continuous models, Finance Stoch., 21 (2017), 1103-1139.
doi: 10.1007/s00780-017-0337-3.
|
[3]
|
J.-P. Ansel and C. Stricker, Couverture des actifs contingents et prix maximum, Ann. Inst. H. Poincaré Probab. Statist., 30 (1994), 303-315.
|
[4]
|
K. E. Back, Asset Pricing and Portfolio Choice Theory, Oxford University Press, 2010.
doi: 10.1093/acprof:oso/9780190241148.001.0001.
|
[5]
|
D. Á. Bálint and M. Schweizer, Large financial markets, discounting, and no asymptotic arbitrage, Theory Probab. Appl., 65 (2020), 191-223.
doi: 10.4213/tvp5353.
|
[6]
|
D. Á. Bálint and M. Schweizer, Properly discounted asset prices are semimartingales, Math. Financ. Econ., 14 (2020), 661-674.
doi: 10.1007/s11579-020-00269-8.
|
[7]
|
W. Brannath and W. Schachermayer, A bipolar theorem for $L^0_+ (\Omega, \mathcal{F}, \mathbb{P})$, In: J. Azéma et al. (eds.), Séminaire de Probabilités XXXIII, Lecture Notes in Mathematics, vol. 1709, Springer, Berlin, 1999,349–354.
doi: 10.1007/BFb0096525.
|
[8]
|
H. N. Chau, A. Cosso, C. Fontana and O. Mostovyi, Optimal investment with intermediate consumption under no unbounded profit with bounded risk, J. Appl. Probab., 54 (2017), 710-719.
doi: 10.1017/jpr.2017.29.
|
[9]
|
T. Choulli, J. Deng and J. Ma, How non-arbitrage, viability and numéraire portfolio are related, Finance Stoch., 19 (2015), 719-741.
doi: 10.1007/s00780-015-0269-8.
|
[10]
|
F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann., 300 (1994), 463-520.
doi: 10.1007/BF01450498.
|
[11]
|
F. Delbaen and W. Schachermayer, The no-arbitrage property under a change of numéraire, Stochastics Stochastics Rep., 53 (1995), 213-226.
|
[12]
|
F. Delbaen and W. Schachermayer, The Banach space of workable contingent claims in arbitrage theory, Ann. Inst. H. Poincaré Probab. Statist., 33 (1997), 113-144.
doi: 10.1016/S0246-0203(97)80118-5.
|
[13]
|
F. Delbaen and W. Schachermayer, The fundamental theorem of asset pricing for unbounded stochastic processes, Math. Ann., 312 (1998), 215-250.
doi: 10.1007/s002080050220.
|
[14]
|
____, The Mathematics of Arbitrage, Springer, Berlin, 2006.
|
[15]
|
D. Filipović and E. Platen, Consistent market extensions under the benchmark approach, Math. Finance, 19 (2009), 41-52.
doi: 10.1111/j.1467-9965.2008.00356.x.
|
[16]
|
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore, 2013.
|
[17]
|
M. Herdegen, No-arbitrage in a numéraire-independent modeling framework, Math. Finance, 27 (2017), 568-603.
doi: 10.1111/mafi.12088.
|
[18]
|
M. Herdegen and M. Schweizer, Strong bubbles and strict local martingales, Int. J. Theor. Appl. Finance, 19 (2016), 1650022, 44 pp.
doi: 10.1142/S0219024916500229.
|
[19]
|
J. Jacod, Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Mathematics, vol. 714, Springer, Berlin, 1979.
|
[20]
|
J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Second ed., Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-662-05265-5.
|
[21]
|
Y. Kabanov, C. Kardaras and S. Song, No arbitrage of the first kind and local martingale numéraires, Finance Stoch., 20 (2016), 1097-1108.
doi: 10.1007/s00780-016-0310-6.
|
[22]
|
Y. Kabanov and M. Safarian, Markets with Transaction Costs. Mathematical Theory, Springer Finance. Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-68121-2.
|
[23]
|
Yu. M. Kabanov, On the FTAP of Kreps–Delbaen–Schachermayer, In: Yu. M. Kabanov et al. (eds.), Statistics and Control of Stochastic Processes: The Liptser Festschrift, World Scientific, River Edge, NJ, 1997,191–203.
|
[24]
|
Yu. M. Kabanov and D. O. Kramkov, Large financial markets: Asymptotic arbitrage and contiguity, Theory Probab. Appl., 39 (1995), 182-187.
doi: 10.1137/1139009.
|
[25]
|
J. Kallsen, σ-localization and σ-martingales, Teor. Veroyatnost. i Primenen., 48 (2003), 152-163.
doi: 10.4213/tvp309.
|
[26]
|
I. Karatzas and R. Fernholz, Stochastic portfolio theory: An overview, In: A. Bensoussan and Q. Zhang (eds.), Handbook of Numerical Analysis, Special Volume: Mathematical Modeling and Numerical Methods in Finance, Elsevier, 2009, 89–167.
|
[27]
|
I. Karatzas and C. Kardaras, The numéraire portfolio in semimartingale financial models, Finance Stoch., 11 (2007), 447-493.
doi: 10.1007/s00780-007-0047-3.
|
[28]
|
____, Portfolio Theory and Arbitrage: A Course in Mathematical Finance, American Mathematical Society, 2021.
|
[29]
|
C. Kardaras, Finitely additive probabilities and the fundamental theorem of asset pricing, In: C. Chiarella and A. Novikov (eds.), Contemporary Quantitative Finance. Essays in Honour of Eckhard Platen, Springer, Berlin, 2010, 19–34.
doi: 10.1007/978-3-642-03479-4_2.
|
[30]
|
C. Kardaras, Numéraire-invariant preferences in financial modeling, Ann. Appl. Probab., 20 (2010), 1697-1728.
doi: 10.1214/09-AAP669.
|
[31]
|
C. Kardaras, Market viability via absence of arbitrage of the first kind, Finance Stoch., 16 (2012), 651-667.
doi: 10.1007/s00780-012-0172-5.
|
[32]
|
____, A time before which insiders would not undertake risk, In: Y. Kabanov et al. (eds.), Inspired by Finance. The Musiela Festschrift, Springer, 2014,349–362.
|
[33]
|
C. Kardaras and E. Platen, On the semimartingale property of discounted asset price-processes, Stochastic Process. Appl., 121 (2011), 2678-2691.
doi: 10.1016/j.spa.2011.06.010.
|
[34]
|
M. Loewenstein and G. A. Willard, Local martingales, arbitrage, and viability. {F}ree snacks and cheap thrills, Economic Theory, 16 (2000), 135-161.
doi: 10.1007/s001990050330.
|
[35]
|
E. Platen and D. Heath, A Benchmark Approach to Quantitative Finance, Springer Finance. Springer-Verlag, Berlin, 2006.
doi: 10.1007/978-3-540-47856-0.
|
[36]
|
P. A. Samuelson, Proof that properly anticipated prices fluctuate randomly, Industrial Management Review, 6 (2) (1965), 41–49.
|
[37]
|
A. N. Shiryaev and A. S. Chernyi, Vector stochastic integrals and the fundamental theorems of asset pricing, Proc. Steklov Inst. Math., 237 (2002), 6-49.
|
[38]
|
C. A. Sin, Strictly Local Martingales and Hedge Ratios on Stochastic Volatility Models, PhD thesis, Cornell University (1996), available online at https://ecommons.cornell.edu/bitstream/handle/1813/9055/TR001171.pdf.
|
[39]
|
K. Takaoka and M. Schweizer, A note on the condition of no unbounded profit with bounded risk, Finance Stoch., 18 (2014), 393-405.
doi: 10.1007/s00780-014-0229-8.
|
[40]
|
M. R. Tehranchi, Arbitrage theory without a numéraire, preprint, arXiv: 1410.2976v2, 2015.
|
[41]
|
J.-A. Yan, A new look at the fundamental theorem of asset pricing, J. Korean Math. Soc., 35 (1998), 659-673.
|