[1]
|
T. W Andersen and D. A. Darling, Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes, Ann. Math. Statistics, 23 (1952), 193-212.
doi: 10.1214/aoms/1177729437.
|
[2]
|
O. E. Barndorff-Nielsen, Processes of normal inverse Gaussian type, Finance and Stochastics, 2 (1998), 41-68.
doi: 10.1007/s007800050032.
|
[3]
|
O. E. Barndorff-Nielsen and N. Shepard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), 167-241.
doi: 10.1111/1467-9868.00282.
|
[4]
|
R. M. Bell and T. M. Cover, Competitive optimality of logarithmic investment, Mathematics of Operations Research, 5 (1980), 161-166.
doi: 10.1287/moor.5.2.161.
|
[5]
|
B. C. Boniece, G. Didier and F. Sabzikar, On fractional Lévy processes: Tempering, sample path properties and stochastic integration, Journal of Statistical Physics, 178 (2020), 954-985.
doi: 10.1007/s10955-019-02475-1.
|
[6]
|
R. Carmona, Indifference Pricing Theory and its Applications, Princeton University Press, Princeton, NJ, 2009.
|
[7]
|
P. Carr, H. Geman, D. B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation, Journal of Business, 75 (2002), 305-332.
|
[8]
|
E. Eberlein, Application of generalized hyperbolic Lévy motions to finance, In Lévy Processes: Theory and Applications, (Eds), Barndorff-Nielsen O. E. Mikosch T. and Resnick S. Birkhäuser Verlag, 2001.
|
[9]
|
E. Eberlein and U. Keller, Hyperbolic distributions in finance, Bernoulli, 1 (1995), 281-299.
|
[10]
|
E. Eberlein and K. Prause, The generalized hyperbolic model: Financial derivatives and risk measures, In Mathematical Finance-Bachelier Finance Congress 2000. (Eds) Geman H. Madan D. Pliska SR. and Vorst T. Springer Verlag, 2002.
|
[11]
|
L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66.
|
[12]
|
I. Karatzas, Optimization problems in the theory of continuous trading, SIAM Journal of Control and Optimization, 27 (1989), 1221-1259.
doi: 10.1137/0327063.
|
[13]
|
H. E. Leland, Corporate debt value, bond covenants, and optimal capital structure, Journal of Finance, 49 (1994), 1213-1252.
|
[14]
|
X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no short selling constraints, SIAM Journal of Control and Optimization, 40 (2002), 1540-1555.
doi: 10.1137/S0363012900378504.
|
[15]
|
D. Madan, P. Carr and E. Chang, The variance gamma process and option pricing, European Finance Review, 2 (1998), 79-105.
|
[16]
|
D. B. Madan, Asset pricing theory for two price markets, Annals of Finance, 11 (2014), 1-35.
|
[17]
|
D. B. Madan, Estimating parameteric models of probability distributions, Methodology and Computing in Applied Probability, 17 (2015), 823-831.
doi: 10.1007/s11009-014-9409-4.
|
[18]
|
D. B. Madan, Efficient estimation of expected stock returns, Finance Research Letters, 23 (2017), 31-38.
|
[19]
|
D. B. Madan, M. Pistorius and M. Stadje, On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation, Finance and Stochastics, 21 (2017), 1073-1102.
|
[20]
|
D. B. Madan and W. Schoutens, Nonlinear Valuation and Non-Gaussian Risks in Finance, Cambridge University Press, Cambridge, UK, 2022.
doi: 10.1017/9781108993876.
|
[21]
|
D. B. Madan, W. Schoutens and K. Wang, Measuring and monitoring the efficiency of markets, International Journal and Theoretical and Applied Finance, 20 (2017), 1750051, 32 pp.
doi: 10.1142/S0219024917500510.
|
[22]
|
D. B. Madan, W. Schoutens and K. Wang, Bilateral multiple Gamma returns: Their risks and rewards, International Journal of Financial Engineering, 7 (2020), 2050008, 27 pp.
doi: 10.1142/S2424786320500085.
|
[23]
|
D. Madan and E. Seneta, The variance gamma (VG) model for share market returns, Journal of Business, 63 (1990), 511-524.
|
[24]
|
D. B. Madan and K. Wang, Asymmetries in financial returns, International Journal of Financial Engineering, 4 (2017), 1750045, 37 pp.
doi: 10.1142/S2424786317500451.
|
[25]
|
D. B. Madan and K. Wang, Stationary increments reverting to a Tempered Fractional Lévy Process (TFLP), forthcoming in Quantitative Finance, 22 (2022), 1391–1404.
doi: 10.1080/14697688.2022.2060852.
|
[26]
|
T. Marquardt, Fractional Lévy processes with an application to long memory moving average processes, Bernouilli, 12 (2006), 1099-1126.
|
[27]
|
R. Merton, Optimum consumption and portfolio rulse in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.
|
[28]
|
J. Moody and M. Safell, Learning to trade via Direct reinforcement, IEEE Transactions on Neural Networks, 12 (2001), 875-889.
|
[29]
|
S. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty with Robust CLT and G-Brownian Motion, Springer, Berlin, 2019.
doi: 10.1007/978-3-662-59903-7.
|
[30]
|
J. Pitman and M. Yor, Infinitely divisible laws associated with hyperbolic functions, Canadian Journal of Mathematics, 55 (2003), 292-330.
doi: 10.4153/CJM-2003-014-x.
|
[31]
|
S. R. Pliska, A stochastic calculus model of continuous trading: Optimal portfolios, Mathematics of Operations Research, 11 (1986), 371-382.
doi: 10.1287/moor.11.2.371.
|
[32]
|
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, Cambridge, MA, 2006.
|
[33]
|
M. Royer, Backward stochastic differential equations with jumps and related non-linear expectations, Stochastic Processes and their Applications, 116 (2006), 1358-1376.
|
[34]
|
W. Schoutens and J. L. Teugels, Lévy processes, polynomials and martingales, Communications in Statistics: Stochastic Models, 14 (1998), 335-349.
doi: 10.1080/15326349808807475.
|