\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

High dimensional Markovian trading of a single stock

This paper is the private opinion of the authors and does not necessarily reflect the policy and views of Morgan Stanley

Abstract / Introduction Full Text(HTML) Figure(5) / Table(6) Related Papers Cited by
  • OU processes with long term drifts that are Tempered Fractional Lévy Processes reduce to a $ d+1 $ dimensional Markovian system when the parameter $ d $ is an integer. Markovian optimization problems are formulated for the proportion of a dollar to be invested in a risky stock following the specified dynamics. The objective evaluates the cumulated discounted returns to a dollar being invested continuously through time. Risk sensitivity is accomplished by maximizing a conservative financial valuation seen as a nonlinear expectation. Trading policies are determined by solutions of nonlinear partial integro-differential equations. The policies are evaluated on a quantized set of representative Markovian states in the higher dimensions. Gaussian Process Regressions are then employed to deliver general functions of the state. The nonlinear policy functions deliver good trading outcomes on simulated data. The policy functions are then applied to trading $ SPY $ from $ 2008 $ through $ 2020 $ with good results. They are also employed to trade $ 874 $ stocks over a four year period with reasonable results. Only three policy functions trained on one year of $ SPY $ data for $ 2020 $ are reported on. It is conjectured that a variety of functions may be trained on other data sets over other periods and selections may then be made for the functions actually traded on a particular stock at a particular time from this collection. The underlying dynamics may also be further enriched by allowing for a Markov chain of states that code changes in the parameter values for the driving Lévy process.

    Mathematics Subject Classification: 60G18, 60G51, 91G10, 91G15, 91B55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  HDMBG fit to SPY returns for 252 daily returns ending December 31, 2020. Observed tail probabilities are shown as circles and model probabilities are presented as dots

    Figure 2.  Cumulated returns from following three policy functions over the years 2008 through 2020. The results for $ c = 1, $ $ 0.25, $ and $ 0.01 $ are presented in blue, red and black respectively

    Figure 3.  Time series for the proportion of the dollar held in $ SPY $ over time by the three policies. The values for $ c = 1, $ $ c = .25, $ and $ c = .01 $ are represented by blue red and black dots

    Figure 4.  Cumulated returns from three policies for four d values trading SPY over the years 2008 through 2020

    Figure 5.  Cumulated returns on a dollar invested in $ 874 $ stocks daily generated by three policy functions trained to four values of $ d $ on $ SPY $ data for $ 2020. $ The trading period was $ 2016 $ through $ 2019 $

    Table 1.  Marginal Percentiles of Variates

    Percentile Level Drift Speed Accel.
    1 -0.1021 -0.0573 -0.0673 -0.0896
    5 -0.0623 -0.0332 -0.0387 -0.0501
    10 -0.0433 -0.0225 -0.0267 -0.0313
    25 -0.0193 -0.0085 -0.0101 -0.0099
    50 -0.0012 0.0003 0.0005 0.0017
    75 0.0090 0.0054 0.0059 0.0070
    90 0.0157 0.0086 0.0097 0.0120
    95 0.0199 0.0105 0.0120 0.0155
    99 0.0284 0.0145 0.0168 0.0228
     | Show Table
    DownLoad: CSV

    Table 2.  RSQR Results

    c=1 c=.25 c=.01
    Policy linear 0.4729 0.4179 0.2296
    nonlinear 0.9126 0.8981 0.8275
    Value linear -0.3893 -0.2615 0.4087
    nonlinear 0.9848 0.9735 0.9968
     | Show Table
    DownLoad: CSV

    Table 3.  Policy Function Regressions

    c=1 c=.25 c=.01
    Variable Coef tstat Coef tstat Coef tstat
    Constant -0.0868 -30.17 -0.0109 -37.19 -0.0441 -10.82
    Level -8.8592 -19.50 -9.4211 -22.20 -2.6597 -4.13
    Drift 10.3055 18.47 10.8714 20.86 5.7987 7.33
    Speed -2.3904 -7.47 -3.6848 -12.32 -0.8702 -1.92
    Accel 0.6178 1.23 2.4821 5.30 -5.0021 -7.04
     | Show Table
    DownLoad: CSV

    Table 4.  Gradient Percentiles c = .01

    Percentile Level Drift Speed Accel.
    1 -84.45 -67.82 -230.47 -75.49
    5 -46.81 -37.07 -170.21 -44.61
    10 -31.91 -24.63 -130.60 -31.60
    25 -16.02 -6.54 -53.31 -13.52
    50 -1.30 11.14 -8.27 0.36
    75 10.26 52.03 10.87 15.40
    90 23.10 103.67 36.96 33.61
    95 33.37 141.53 60.29 48.37
    99 54.40 212.27 116.18 99.08
     | Show Table
    DownLoad: CSV

    Table 5.  Cumulated Return Percentiles on Simulated Paths

    Percentile c=1 c=.25 c=.01 benchmark
    1 0.1881 0.1764 0.0514 -0.0106
    5 0.2521 0.2459 0.1132 0.0114
    10 0.2872 0.2787 0.1513 0.0171
    25 0.3489 0.3436 0.2068 0.0258
    50 0.4267 0.4252 0.2798 0.0353
    75 0.5263 0.4998 0.3577 0.0452
    90 0.6069 0.5809 0.4391 0.0560
    95 0.6747 0.6330 0.4829 0.0650
    99 0.8192 0.7515 0.5664 0.0853
     | Show Table
    DownLoad: CSV

    Table 6.  Performance Measures

    Measure Quartiles c=1 c=.25 c=.01 SPY
    TR 25 -0.0035 -0.0029 0.0071 -0.0027
    50 0.0022 0.0021 0.0130 0.0392
    75 0.0092 0.0140 0.0204 0.0705
    SH 25 -0.7304 -0.6990 1.0007 -0.0789
    50 0.5068 0.5397 2.1524 1.1415
    75 1.6990 1.6258 3.4839 2.1767
    GL 25 0.8611 0.8745 1.2561 0.9876
    50 1.0976 1.0955 1.5333 1.2054
    75 1.3977 1.4129 1.9975 1.4584
    PP 25 0.4844 0.4844 0.5469 0.5000
    50 0.5469 0.5156 0.5938 0.5391
    75 0.5781 0.5547 0.6406 0.5781
    AI 25 -0.0263 -0.0259 0.0400 -0.0028
    50 0.0186 0.0196 0.0811 0.0414
    75 0.0643 0.0696 0.1386 0.0799
    MD 25 0.0056 0.0059 0.0048 0.0383
    50 0.0085 0.0084 0.0090 0.0621
    75 0.0128 0.0150 0.0167 0.0993
     | Show Table
    DownLoad: CSV
  • [1] T. W Andersen and D. A. Darling, Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes, Ann. Math. Statistics, 23 (1952), 193-212.  doi: 10.1214/aoms/1177729437.
    [2] O. E. Barndorff-Nielsen, Processes of normal inverse Gaussian type, Finance and Stochastics, 2 (1998), 41-68.  doi: 10.1007/s007800050032.
    [3] O. E. Barndorff-Nielsen and N. Shepard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), 167-241.  doi: 10.1111/1467-9868.00282.
    [4] R. M. Bell and T. M. Cover, Competitive optimality of logarithmic investment, Mathematics of Operations Research, 5 (1980), 161-166.  doi: 10.1287/moor.5.2.161.
    [5] B. C. BonieceG. Didier and F. Sabzikar, On fractional Lévy processes: Tempering, sample path properties and stochastic integration, Journal of Statistical Physics, 178 (2020), 954-985.  doi: 10.1007/s10955-019-02475-1.
    [6] R. CarmonaIndifference Pricing Theory and its Applications, Princeton University Press, Princeton, NJ, 2009. 
    [7] P. CarrH. GemanD. B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation, Journal of Business, 75 (2002), 305-332. 
    [8] E. Eberlein, Application of generalized hyperbolic Lévy motions to finance, In Lévy Processes: Theory and Applications, (Eds), Barndorff-Nielsen O. E. Mikosch T. and Resnick S. Birkhäuser Verlag, 2001.
    [9] E. Eberlein and U. Keller, Hyperbolic distributions in finance, Bernoulli, 1 (1995), 281-299. 
    [10] E. Eberlein and K. Prause, The generalized hyperbolic model: Financial derivatives and risk measures, In Mathematical Finance-Bachelier Finance Congress 2000. (Eds) Geman H. Madan D. Pliska SR. and Vorst T. Springer Verlag, 2002.
    [11] L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66. 
    [12] I. Karatzas, Optimization problems in the theory of continuous trading, SIAM Journal of Control and Optimization, 27 (1989), 1221-1259.  doi: 10.1137/0327063.
    [13] H. E. Leland, Corporate debt value, bond covenants, and optimal capital structure, Journal of Finance, 49 (1994), 1213-1252. 
    [14] X. LiX. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no short selling constraints, SIAM Journal of Control and Optimization, 40 (2002), 1540-1555.  doi: 10.1137/S0363012900378504.
    [15] D. MadanP. Carr and E. Chang, The variance gamma process and option pricing, European Finance Review, 2 (1998), 79-105. 
    [16] D. B. Madan, Asset pricing theory for two price markets, Annals of Finance, 11 (2014), 1-35.
    [17] D. B. Madan, Estimating parameteric models of probability distributions, Methodology and Computing in Applied Probability, 17 (2015), 823-831.  doi: 10.1007/s11009-014-9409-4.
    [18] D. B. Madan, Efficient estimation of expected stock returns, Finance Research Letters, 23 (2017), 31-38. 
    [19] D. B. MadanM. Pistorius and M. Stadje, On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation, Finance and Stochastics, 21 (2017), 1073-1102. 
    [20] D. B. Madan and  W. SchoutensNonlinear Valuation and Non-Gaussian Risks in Finance, Cambridge University Press, Cambridge, UK, 2022.  doi: 10.1017/9781108993876.
    [21] D. B. Madan, W. Schoutens and K. Wang, Measuring and monitoring the efficiency of markets, International Journal and Theoretical and Applied Finance, 20 (2017), 1750051, 32 pp. doi: 10.1142/S0219024917500510.
    [22] D. B. Madan, W. Schoutens and K. Wang, Bilateral multiple Gamma returns: Their risks and rewards, International Journal of Financial Engineering, 7 (2020), 2050008, 27 pp. doi: 10.1142/S2424786320500085.
    [23] D. Madan and E. Seneta, The variance gamma (VG) model for share market returns, Journal of Business, 63 (1990), 511-524. 
    [24] D. B. Madan and K. Wang, Asymmetries in financial returns, International Journal of Financial Engineering, 4 (2017), 1750045, 37 pp. doi: 10.1142/S2424786317500451.
    [25] D. B. Madan and K. Wang, Stationary increments reverting to a Tempered Fractional Lévy Process (TFLP), forthcoming in Quantitative Finance, 22 (2022), 1391–1404. doi: 10.1080/14697688.2022.2060852.
    [26] T. Marquardt, Fractional Lévy processes with an application to long memory moving average processes, Bernouilli, 12 (2006), 1099-1126. 
    [27] R. Merton, Optimum consumption and portfolio rulse in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413. 
    [28] J. Moody and M. Safell, Learning to trade via Direct reinforcement, IEEE Transactions on Neural Networks, 12 (2001), 875-889. 
    [29] S. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty with Robust CLT and G-Brownian Motion, Springer, Berlin, 2019. doi: 10.1007/978-3-662-59903-7.
    [30] J. Pitman and M. Yor, Infinitely divisible laws associated with hyperbolic functions, Canadian Journal of Mathematics, 55 (2003), 292-330.  doi: 10.4153/CJM-2003-014-x.
    [31] S. R. Pliska, A stochastic calculus model of continuous trading: Optimal portfolios, Mathematics of Operations Research, 11 (1986), 371-382.  doi: 10.1287/moor.11.2.371.
    [32] C. E. Rasmussen and  C. K. I. WilliamsGaussian Processes for Machine Learning, MIT Press, Cambridge, MA, 2006. 
    [33] M. Royer, Backward stochastic differential equations with jumps and related non-linear expectations, Stochastic Processes and their Applications, 116 (2006), 1358-1376. 
    [34] W. Schoutens and J. L. Teugels, Lévy processes, polynomials and martingales, Communications in Statistics: Stochastic Models, 14 (1998), 335-349.  doi: 10.1080/15326349808807475.
  • 加载中
Open Access Under a Creative Commons license

Figures(5)

Tables(6)

SHARE

Article Metrics

HTML views(3508) PDF downloads(364) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return