In this paper, we present a model in which the default time may coincide with a strictly positive probability with stopping times in the reference filtration. One of the advantages of our construction is that one can choose the sequence of these stopping times.
Citation: |
[1] | A. Aksamit, T. Choulli and M. Jeanblanc, Thin times and random times' decomposition, Electron. J. Probab., 26 (2021), Paper No. 31, 22 pp. doi: 10.1214/20-EJP569. |
[2] | A. Aksamit and M. Jeanblanc, Enlargement of Filtration with Finance in View, Springer, 2017. |
[3] | A. Aksamit and L. Li, Projections, pseudo-stopping times and the immersion property, Séminaire de Probabilités XLVIII, Lecture Notes in Mathematics, Edts Donati-Martin, C. and Lejay, A. and Rouault, A., 459-467, Lecture Notes in Math., 2168, Springer, Cham, 2016. |
[4] | A. Bélanger, S. E. Shreve and D. Wong, A general framework for pricing credit risk, Mathematical Finance, 14 (2004), 317-350. doi: 10.1111/j.0960-1627.2004.t01-1-00193.x. |
[5] | T. R. Bielecki and M. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, Springer Finance, 2002. |
[6] | Z. Chaieb and D. Gueye, Pricing zero-coupon CAT bonds using the enlargement of filtration theory: A general framework, Work in progress, 2022. doi: 10.4236/jmf.2022.123031. |
[7] | R. Cont and P. Tankov, Financial Modeling with Jump Processes, Chapman & Hall/CRC, 2004. |
[8] | N. El Karoui, M. Jeanblanc and Y. Jiao, What happens after a default: The conditional density approach, Stochastic Processes and their Applications, 120 (2010), 1011-1032. doi: 10.1016/j.spa.2010.02.003. |
[9] | C. Fontana and T. Schmidt, General dynamic term structures under default risk, Stochastic Processes and their Applications, 128 (2018), 3353-3386. doi: 10.1016/j.spa.2017.11.003. |
[10] | F. Gehmlich and T. Schmidt, Dynamic defaultable term structure modeling beyond the intensity paradigm, Mathematical Finance, 28 (2018), 211-239. doi: 10.1111/mafi.12138. |
[11] | K. Giesecke and S. Zhu, Transform analysis for point processes and applications in credit risk, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 23 (2013), 742-762. doi: 10.1111/j.1467-9965.2011.00512.x. |
[12] | S. He, J. Wang and J. Yan, Semimartingale Theory and Stochastic Calculus, Science Press and CRC Press, Inc., Beijing, 1992. |
[13] | M. Jacobsen, Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes, Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 2006. |
[14] | J. Jacod, Grossissement initial, hypothèse $H^\prime$ et théorème de Girsanov, in Grossissements de Filtrations: Exemples et Applications, Lecture Notes in Mathematics, Séminaire de Calcul Stochastique 1982-83, 1118, Springer-Verlag, 1987. |
[15] | M. Jeanblanc and L. Li, Characteristics and constructions of default times, SIAM Journal on Financial Mathematics, 11 (2020), 720-749. doi: 10.1137/19M1274912. |
[16] | M. Jeanblanc and S. Song, Martingale representation property in progressively enlarged filtrations, Stochastic Processes and their Applications, 125 (2015), 4242-4271. doi: 10.1016/j.spa.2015.06.007. |
[17] | M. Jeanblanc, M. Yor and M. Chesney, Martingale Methods for Financial Markets, Springer-Verlag London, Ltd., London, 2009. doi: 10.1007/978-1-84628-737-4. |
[18] | Y. Jiao and S. Li, Generalized density approach in progressive enlargement of filtrations, Electronic Journal of Probability, 20 (2015), no. 85, 21 pp. doi: 10.1214/EJP.v20-3296. |
[19] | Y. Jiao and S. Li, Modeling sovereign risks: From a hybrid model to the generalized density approach, Mathematical Finance, 28 (2018), 240-267. doi: 10.1111/mafi.12136. |
[20] | D. Lando, On Cox processes and credit risky securities, Review of Derivatives Research, 2 (1998), 99-120. |
[21] | G. Last and A. Brandt, Marked Point Processes on the Real Line. The Dynamic Approach, Springer-Verlag, New York, 1995. |
[22] | L. Li and M. Rutkowski, Progressive enlargements of filtrations with pseudo-honest times, The Annals of Applied Probability, 24 (2014), 1509-1553. doi: 10.1214/13-AAP955. |
[23] | J.-F. Mai and M. Scherer, Subordinators which are infinitely divisible w.r.t. time: Construction, properties, and simulation of max-stable sequences and infinitely divisible laws, ALEA Lat. Am. J. Probab. Math. Stat., 16 (2019), 977-1005. doi: 10.30757/alea.v16-35. |
[24] | J.-F. Mai, M. Scherer and R. Zagst, CIID frailty models and implied copulas, in Copulae in Mathematical and Quantitative Finance, Springer, 213 (2013), 201-230. doi: 10.1007/978-3-642-35407-6_10. |
[25] | M. Métivier, Pathwise differentiability with respect to a parameter of solutions of stochastic differential equations, Séminaire de Probabilités XVI, 920 (1982), 490-502. |
[26] | B. Øksendal and T. Zhang, The Itô-Ventzell formula and forward stochastic differential equations driven by Poisson random measures, Osaka Journal of Mathematics, 44 (2007), 207-230. |
[27] | P. E. Protter, Stochastic Integration and Differential Equations, second edition, Springer, 2004. |
[28] | T. Schmidt, Shot noise process in finance, in, From Statistics to Mathematical Finance, Springer, (2017), 367-385. |
[29] | T. Schmidt, Catastrophe insurance modeled by shot-noise processes, Risks, 2, (2014), 3-24. doi: 10.3390/risks2010003. |