\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generalized Cox model for default times

  • *Corresponding author: Monique Jeanblanc

    *Corresponding author: Monique Jeanblanc

The two authors were supported by 'Chaire Marchés en Mutation', French Banking Federation and ILB, Labex ANR 11-LABX-0019

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we present a model in which the default time may coincide with a strictly positive probability with stopping times in the reference filtration. One of the advantages of our construction is that one can choose the sequence of these stopping times.

    Mathematics Subject Classification: Primary: 60G05, 91B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Aksamit, T. Choulli and M. Jeanblanc, Thin times and random times' decomposition, Electron. J. Probab., 26 (2021), Paper No. 31, 22 pp. doi: 10.1214/20-EJP569.
    [2] A. Aksamit and M. Jeanblanc, Enlargement of Filtration with Finance in View, Springer, 2017.
    [3] A. Aksamit and L. Li, Projections, pseudo-stopping times and the immersion property, Séminaire de Probabilités XLVIII, Lecture Notes in Mathematics, Edts Donati-Martin, C. and Lejay, A. and Rouault, A., 459-467, Lecture Notes in Math., 2168, Springer, Cham, 2016.
    [4] A. BélangerS. E. Shreve and D. Wong, A general framework for pricing credit risk, Mathematical Finance, 14 (2004), 317-350.  doi: 10.1111/j.0960-1627.2004.t01-1-00193.x.
    [5] T. R. Bielecki and M. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, Springer Finance, 2002.
    [6] Z. Chaieb and D. Gueye, Pricing zero-coupon CAT bonds using the enlargement of filtration theory: A general framework, Work in progress, 2022. doi: 10.4236/jmf.2022.123031.
    [7] R. Cont and P. Tankov, Financial Modeling with Jump Processes, Chapman & Hall/CRC, 2004.
    [8] N. El KarouiM. Jeanblanc and Y. Jiao, What happens after a default: The conditional density approach, Stochastic Processes and their Applications, 120 (2010), 1011-1032.  doi: 10.1016/j.spa.2010.02.003.
    [9] C. Fontana and T. Schmidt, General dynamic term structures under default risk, Stochastic Processes and their Applications, 128 (2018), 3353-3386.  doi: 10.1016/j.spa.2017.11.003.
    [10] F. Gehmlich and T. Schmidt, Dynamic defaultable term structure modeling beyond the intensity paradigm, Mathematical Finance, 28 (2018), 211-239.  doi: 10.1111/mafi.12138.
    [11] K. Giesecke and S. Zhu, Transform analysis for point processes and applications in credit risk, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 23 (2013), 742-762.  doi: 10.1111/j.1467-9965.2011.00512.x.
    [12] S. HeJ. Wang and  J. YanSemimartingale Theory and Stochastic Calculus, Science Press and CRC Press, Inc., Beijing, 1992. 
    [13] M. Jacobsen, Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes, Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 2006.
    [14] J. Jacod, Grossissement initial, hypothèse $H^\prime$ et théorème de Girsanov, in Grossissements de Filtrations: Exemples et Applications, Lecture Notes in Mathematics, Séminaire de Calcul Stochastique 1982-83, 1118, Springer-Verlag, 1987.
    [15] M. Jeanblanc and L. Li, Characteristics and constructions of default times, SIAM Journal on Financial Mathematics, 11 (2020), 720-749.  doi: 10.1137/19M1274912.
    [16] M. Jeanblanc and S. Song, Martingale representation property in progressively enlarged filtrations, Stochastic Processes and their Applications, 125 (2015), 4242-4271.  doi: 10.1016/j.spa.2015.06.007.
    [17] M. Jeanblanc, M. Yor and M. Chesney, Martingale Methods for Financial Markets, Springer-Verlag London, Ltd., London, 2009. doi: 10.1007/978-1-84628-737-4.
    [18] Y. Jiao and S. Li, Generalized density approach in progressive enlargement of filtrations, Electronic Journal of Probability, 20 (2015), no. 85, 21 pp. doi: 10.1214/EJP.v20-3296.
    [19] Y. Jiao and S. Li, Modeling sovereign risks: From a hybrid model to the generalized density approach, Mathematical Finance, 28 (2018), 240-267.  doi: 10.1111/mafi.12136.
    [20] D. Lando, On Cox processes and credit risky securities, Review of Derivatives Research, 2 (1998), 99-120. 
    [21] G. Last and A. Brandt, Marked Point Processes on the Real Line. The Dynamic Approach, Springer-Verlag, New York, 1995.
    [22] L. Li and M. Rutkowski, Progressive enlargements of filtrations with pseudo-honest times, The Annals of Applied Probability, 24 (2014), 1509-1553.  doi: 10.1214/13-AAP955.
    [23] J.-F. Mai and M. Scherer, Subordinators which are infinitely divisible w.r.t. time: Construction, properties, and simulation of max-stable sequences and infinitely divisible laws, ALEA Lat. Am. J. Probab. Math. Stat., 16 (2019), 977-1005.  doi: 10.30757/alea.v16-35.
    [24] J.-F. Mai, M. Scherer and R. Zagst, CIID frailty models and implied copulas, in Copulae in Mathematical and Quantitative Finance, Springer, 213 (2013), 201-230. doi: 10.1007/978-3-642-35407-6_10.
    [25] M. Métivier, Pathwise differentiability with respect to a parameter of solutions of stochastic differential equations, Séminaire de Probabilités XVI, 920 (1982), 490-502.
    [26] B. Øksendal and T. Zhang, The Itô-Ventzell formula and forward stochastic differential equations driven by Poisson random measures, Osaka Journal of Mathematics, 44 (2007), 207-230. 
    [27] P. E. Protter, Stochastic Integration and Differential Equations, second edition, Springer, 2004.
    [28] T. Schmidt, Shot noise process in finance, in, From Statistics to Mathematical Finance, Springer, (2017), 367-385.
    [29] T. Schmidt, Catastrophe insurance modeled by shot-noise processes, Risks, 2, (2014), 3-24. doi: 10.3390/risks2010003.
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(2271) PDF downloads(399) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return