Trading a financial asset pushes its price as well as the prices of other assets, a phenomenon known as cross-impact. We consider a general class of kernel-based cross-impact models and investigate suitable parametrisations for trading purposes. We focus on kernels that guarantee that prices are martingales and anticipate future order flow (martingale-admissible kernels) and those that ensure there is no possible price manipulation (no-statistical-arbitrage-admissible kernels). We determine the overlap between these two classes and provide formulas for calibration of cross-impact kernels on data. We illustrate our results using SP500 futures data.
Citation: |
[1] |
A. Alfonsi, F. Klöck and A. Schied, Multivariate transient price impact and matrix-valued positive definite functions, Mathematics of Operations Research, 41 (2016), 914-934.
doi: 10.1287/moor.2015.0761.![]() ![]() ![]() |
[2] |
R. Almgren, C. Thum, E. Hauptmann and H. Li, Direct estimation of equity market impact, Risk, 18 (2005), 58-62.
![]() |
[3] |
E. Bacry, K. Dayri and J.-F. Muzy, Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data, The European Physical Journal B, 85 (2012), Article number: 157, 12 pp.
doi: 10.1140/epjb/e2012-21005-8.![]() ![]() |
[4] |
E. Bacry, I. Mastromatteo and J.-F. Muzy, Hawkes processes in finance, Market Microstructure and Liquidity, 1 (2015), 1550005.
doi: 10.1142/S2382626615500057.![]() ![]() |
[5] |
M. Benzaquen, I. Mastromatteo, Z. Eisler and J.-P. Bouchaud, Dissecting cross-impact on stock markets: An empirical analysis, Journal of Statistical Mechanics: Theory and Experiment, 2017 (2017), 23406.
![]() |
[6] |
J.-P. Bouchaud, J. Bonart, J. Donier and M. Gould, Trades, Quotes and Prices, Cambridge University Press, 2018.
![]() |
[7] |
P. Brémaud and L. Massoulié, Stability of nonlinear Hawkes processes, The Annals of Probability, 24 (1996), 1563-1588.
doi: 10.1214/aop/1065725193.![]() ![]() ![]() |
[8] |
J. Caballe and M. Krishnan, Imperfect competition in a multi-security market with risk neutrality, Econometrica (1986-1998), 62 (1994), 695-704.
doi: 10.2307/2951665.![]() ![]() |
[9] |
D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure, Springer, New York, 2008.
doi: 10.1007/978-0-387-49835-5.![]() ![]() ![]() |
[10] |
L. C. Garcia del Molino, I. Mastromatteo, M. Benzaquen and J.-P. Bouchaud, The multivariate Kyle model: More is different, SIAM Journal on Financial Mathematics, 11 (2020), 327-357.
doi: 10.1137/18M1231997.![]() ![]() ![]() |
[11] |
J. Gatheral, No-dynamic-arbitrage and market impact, Quantitative Finance, 10 (2010), 749-759.
doi: 10.1080/14697680903373692.![]() ![]() ![]() |
[12] |
S. J. Hardiman, N. Bercot and J.-P. Bouchaud, Critical reflexivity in financial markets: A hawkes process analysis, The European Physical Journal B, 86 (2013), 1-9.
![]() |
[13] |
J. Hasbrouck and D. J. Seppi, Common factors in prices, order flows, and liquidity, Journal of Financial Economics, 59 (2001), 383-411.
![]() |
[14] |
A. G. Hawkes, Point spectra of some mutually exciting point processes, Journal of the Royal Statistical Society: Series B (Methodological), 33 (1971), 438-443.
doi: 10.1111/j.2517-6161.1971.tb01530.x.![]() ![]() ![]() |
[15] |
T. Jaisson, Market impact as anticipation of the order flow imbalance, Quantitative Finance, 15 (2015), 1123-1135.
doi: 10.1080/14697688.2015.1013148.![]() ![]() ![]() |
[16] |
P. Jusselin and M. Rosenbaum, No-arbitrage implies power-law market impact and rough volatility, Mathematical Finance, 30 (2020), 1309-1336.
doi: 10.1111/mafi.12254.![]() ![]() ![]() |
[17] |
A. S. Kyle, Continuous auctions and insider trading, Econometrica: Journal of the Econometric Society, 53 (1985), 1315-1335.
doi: 10.2307/1913210.![]() ![]() |
[18] |
E. Lukacs, Characteristic Functions, Hafner Publishing Co., New York, 1970.
![]() ![]() |
[19] |
J. G. McWhirter, P. D. Baxter, T. Cooper, S. Redif and J. Foster, An EVD algorithm for para-Hermitian polynomial matrices, IEEE Transactions on Signal Processing, 55 (2007), 2158-2169.
doi: 10.1109/TSP.2007.893222.![]() ![]() ![]() |
[20] |
P. Pasquariello and C. Vega, Strategic cross-trading in the US stock market, Review of Finance, 19 (2015), 229-282.
![]() |
[21] |
M. Rosenbaum and M. Tomas, From microscopic price dynamics to multidimensional rough volatility models, Advances in Applied Probability, 53 (2021), 425-462.
doi: 10.1017/apr.2020.60.![]() ![]() ![]() |
[22] |
M. Schneider and F. Lillo, Cross-impact and no-dynamic-arbitrage, Quantitative Finance, 19 (2019), 137-154.
doi: 10.1080/14697688.2018.1467033.![]() ![]() ![]() |
[23] |
E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, 1948.
![]() |
[24] |
M. Tomas, I. Mastromatteo and M. Benzaquen, How to build a cross-impact model from first principles: Theoretical requirements and empirical results, Quant. Finance, 22 (2022), 1017-1036.
doi: 10.1080/14697688.2021.2020328.![]() ![]() ![]() |
[25] |
M. Tomas, I. Mastromatteo and M. Benzaquen, Cross impact in derivative markets, SSRN, 2021. arXiv: 2102.02834
doi: 10.2139/ssrn.3779461.![]() ![]() |
[26] |
N. Torre, BARRA market impact model handbook, BARRA Inc., Berkeley, 1997.
![]() |
[27] |
G. Van Rossum and F. L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, 2009.
![]() |
[28] |
P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and SciPy 1.0 Contributors, SciPy 1.0: Fundamental algorithms for scientific computing in python, Nature Methods, 17 (2020), 261-272.
doi: 10.1038/s41592-019-0686-2.![]() ![]() |
[29] |
S. Wang, S. Neusüß and T. Guhr, Grasping asymmetric information in market impacts, Eur. Phys. J. B, 91 (2018), 266. arXiv: 1710.07959, 2017.
doi: 10.2139/ssrn.3056986.![]() ![]() |
[30] |
S. Wang, R. Schäfer and T. Guhr, Price response in correlated financial markets: Empirical results, arXiv preprint, arXiv: 1510.03205, 2015.
![]() |
[31] |
S. Wang, R. Schäfer and T. Guhr, Cross-response in correlated financial markets: Individual stocks, The European Physical Journal B, 89 (2016), Paper No. 105, 16 pp.
doi: 10.1140/epjb/e2016-60818-y.![]() ![]() ![]() |
[32] |
Z. Wang, J. G. McWhirter and S. Weiss, Multichannel spectral factorization algorithm using polynomial matrix eigenvalue decomposition, In 2015 49th Asilomar Conference on Signals, Systems and Computers, (2015), 1714-1718. IEEE.
doi: 10.1109/ACSSC.2015.7421442.![]() ![]() |
[33] |
N. Wiener and E. J. Akutowicz, A factorization of positive hermitian matrices, Journal of Mathematics and Mechanics, 8 (1959), 111-120.
doi: 10.1512/iumj.1959.8.58007.![]() ![]() ![]() |
[34] |
N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes, Acta Mathematica, 98 (1957), 111-150.
doi: 10.1007/BF02404472.![]() ![]() ![]() |
Order flow auto-covariance
Boundary values of
Values of the
Values of the
Example of predicted prices from