\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On asymptotically arbitrage-free approximations of the implied volatility

The first author is supported by JSPS KAKENHI Grant Number 21K03369.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Following-up Fukasawa and Gatheral (Frontiers of Mathematical Finance, 2022), we prove that the BBF formula, the SABR formula, and the rough SABR formula provide asymptotically arbitrage-free approximations of the implied volatility under, respectively, the local volatility model, the SABR model, and the rough SABR model.

    Mathematics Subject Classification: Primary: 91B28; Secondary: 91B70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Balland, Forward smile, presentation at Global Derivatives, Paris, September 2006.
    [2] H. BerestyckiJ. Busca and I. Florent, Asymptotics and calibration of local volatility models, Quantitative Finance, 2 (2002), 61-69.  doi: 10.1088/1469-7688/2/1/305.
    [3] H. BerestyckiJ. Busca and I. Florent, Computing the implied volatility in stochastic volatility models, Communications on Pure and Applied Mathematics, 57 (2004), 1352-1373.  doi: 10.1002/cpa.20039.
    [4] M. Fukasawa, Short-time at-the-money skew and rough fractional volatility, Quantitative Finance, 17 (2017), 189-198.  doi: 10.1080/14697688.2016.1197410.
    [5] M. Fukasawa, Hedging and Calibration for Log-normal Rough Volatility Models, presentation at the 10th World Congress of The Bachelier Finance Society, Dublin, 2018.
    [6] M. Fukasawa, Volatility has to be rough, Quantitative Finance, 21 (2021), 1-8. doi: 10.1080/14697688.2020.1825781.
    [7] M. Fukasawa, B. Horvath and P. Tankov, Hedging under rough volatility, arXiv: 2105.04073.
    [8] M. Fukasawa and J. Gatheral, A rough SABR formula, Frontiers of Mathematical Finance, 1 (2022), 81-97.  doi: 10.3934/fmf.2021003.
    [9] J. Gatheral, The Volatility Surface: A Practioner's Guide, Wiley, 2006. doi: 10.1002/9781119202073.
    [10] P. HaganD. KumarA. Lesniewski and D. Woodward, Managing smile risk, Wilmott Magazine, 1 (2002), 84-108. 
    [11] M. Musiela, Multivariate fractional Brownian motion and generalizations of SABR model, In: Proceedings of the Conference "Options 45 Years After the Publication of the Black-Scholes-Merton Model", Jerusalem 2018. doi: 10.5281/zenodo.4772004.
    [12] Y. Osajima, The asymptotic expansion formula of implied volatility for dynamic SABR model and FX hybrid model, Available at SSRN, 2007. doi: 10.2139/ssrn.965265.
    [13] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, 1999. doi: 10.1007/978-3-662-06400-9.
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(1955) PDF downloads(233) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return