$ \sigma $ | Continuation region | Threshold $ x_0 $ |
$ 1.55 $ | $ 0.390 $ | 0.160 |
$ 1.65 $ | $ 0.3655 $ | 0.156 |
$ 2 $ | $ 0.3005 $ | 0.136 |
This paper studies optimal Public Private Partnerships contracts between a public entity and a consortium, in continuous-time and with a continuous payment, and the possibility for the public to stop the contract. The public ("she") pays a continuous rent to the consortium ("he"), while the latter gives a best response characterized by his effort. This effort impacts the drift of the social welfare, until a terminal date decided by the public when she stops the contract and gives compensation to the consortium. Usually, the public cannot observe the effort done by the consortium, leading to a principal agent's problem with moral hazard. Therefore this paper formalizes such PPP contracts into a contract theory problem. Due to the long-term characteristic of PPP contracts, the public should incentivize the consortium to provide effort not only through the terminal payment but also through the rent paid until the end of the contract. We solve this optimal stochastic control with optimal stopping problem in this context of moral hazard. The public value function is characterized by the solution of an associated Hamilton Jacobi Bellman Variational Inequality. The public value function, the optimal effort and rent processes are computed numerically by using the Howard algorithm. In particular, the impact of the social welfare's volatility on the optimal contract is studied.
Citation: |
Table 1.
The continuation region and the threshold
$ \sigma $ | Continuation region | Threshold $ x_0 $ |
$ 1.55 $ | $ 0.390 $ | 0.160 |
$ 1.65 $ | $ 0.3655 $ | 0.156 |
$ 2 $ | $ 0.3005 $ | 0.136 |
[1] |
R. W. Anderson, M. C. Bustamante, S. Guibaud and M. Zervos, Agency, firm growth, and managerial turnover, The Journal of Finance, 73 (2018), 419-464.
![]() |
[2] |
E. Auriol and P. M. Picard, A theory of BOT concession contracts, Journal of Economic Behavior & Organization, 89 (2013), 187-209.
![]() |
[3] |
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Analysis, 4 (1991), 271-283.
doi: 10.3233/ASY-1991-4305.![]() ![]() ![]() |
[4] |
B. Biais, T. Mariotti, J.-C. Rochet and S. Villeneuve, Large risks, limited liability, and dynamic moral hazard, Econometrica, 78 (2010), 73-118.
doi: 10.3982/ECTA7261.![]() ![]() ![]() |
[5] |
Z. Chen, Existence and uniqueness for BSDE with stopping time, Chinese Science Bulletin, 43 (1998), 96-99.
doi: 10.1007/BF02883914.![]() ![]() ![]() |
[6] |
J. Cvitanić, D. Possamaï and N. Touzi, Moral hazard in dynamic risk management, Management Science, 63 (2017), 3328-3346.
![]() |
[7] |
J. Cvitanić, D. Possamaï and N. Touzi, Dynamic programming approach to principal-agent problems, Finance and Stochastics, 22 (2018), 1-37.
doi: 10.1007/s00780-017-0344-4.![]() ![]() ![]() |
[8] |
J. Cvitanić and J. Zhang, Optimal compensation with adverse selection and dynamic actions, Mathematics and Financial Economics, 1 (2007), 21-55.
doi: 10.1007/s11579-007-0002-2.![]() ![]() ![]() |
[9] |
J. Cvitanić and J. Zhang, Contract Theory in Continuous-Time Models, Springer Finance. Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-14200-0.![]() ![]() ![]() |
[10] |
R. W. R. Darling and E. Pardoux, Backwards SDE with random terminal time and applications to semilinear elliptic PDE, The Annals of Probability, 25 (1997), 1135-1159.
doi: 10.1214/aop/1024404508.![]() ![]() ![]() |
[11] |
J.-P. Décamps and S. Villeneuve, A two-dimensional control problem arising from dynamic contracting theory, Finance and Stochastics, 23 (2019), 1-28.
doi: 10.1007/s00780-018-0376-4.![]() ![]() ![]() |
[12] |
G. E. Espinosa, C. Hillairet, B. Jourdain and M. Pontier, Reducing the debt: Is it optimal to outsource an investment?, Mathematics and Financial Economics, 10 (2016), 457-493.
doi: 10.1007/s11579-016-0166-8.![]() ![]() ![]() |
[13] |
I. Hajjej, C. Hillairet, M. Mnif and M. Pontier, Optimal contract with moral hazard for public private partnerships, Stochastics, 89 (2017), 1015-1038.
doi: 10.1080/17442508.2017.1303068.![]() ![]() ![]() |
[14] |
C. Hillairet and M. Pontier, A modelization of public-private partnerships with failure time, In Stochastic Analysis and Related Topics, (2012), 91-117.
doi: 10.1007/978-3-642-29982-7_4.![]() ![]() ![]() |
[15] |
B. Holmström and P. Milgrom, Aggregation and linearity in the provision of intertemporal incentives, Econometrica: Journal of the Econometric Society, 55 (1987), 303-328.
doi: 10.2307/1913238.![]() ![]() ![]() |
[16] |
R. A. Howard, Dynamic Programming and Markov Processes, MIT Press, Cambridge, 1960.
![]() ![]() |
[17] |
E. Iossa and D. Martimort, The simple microeconomics of public-private partnerships incentives, Journal of Public Economic Theory, 17 (2015), 4-48.
![]() |
[18] |
N. V. Krylov, Controlled Diffusion Processes, Springer, 2009.
![]() ![]() |
[19] |
Y. Lin, Z. Ren, N. Touzi and J. Yang, Random horizon principal-agent problem, SIAM Journal on Control and Optimization, 60 (2022), 355-384.
doi: 10.1137/20M1321620.![]() ![]() ![]() |
[20] |
T. Mastrolia and D. Possamaï, Moral hazard under ambiguity, Journal of Optimization Theory and Applications, 179 (2018), 452-500.
doi: 10.1007/s10957-018-1230-8.![]() ![]() ![]() |
[21] |
H. Pagès and D. Possamaï, A mathematical treatment of bank monitoring incentives, Finance and Stochastics, 18 (2014), 39-73.
doi: 10.1007/s00780-013-0202-y.![]() ![]() ![]() |
[22] |
H. Pham, Continuous-Time Stochastic Control and Optimization With Financial Applications, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-89500-8.![]() ![]() ![]() |
[23] |
D. Possamaï and N. Touzi, Is there a Golden Parachute in Sannikov's principal-agent problem?, preprint, 2020. arXiv: 2007.05529.
![]() |
[24] |
Y. Sannikov, A continuous-time version of the principal-agent problem, The Review of Economic Studies, 75 (2008), 957-984.
doi: 10.1111/j.1467-937X.2008.00486.x.![]() ![]() ![]() |
[25] |
N. Williams, et al., On Dynamic Principal-Agent Problems in Continuous Time, University of Wisconsin, Madison, 2009.
![]() |
[26] |
M. Yor, Some Aspects of Brownian Motion: Part II: Some Recent Martingale Problems, Birkhäuser, 1997.
doi: 10.1007/978-3-0348-8954-4.![]() ![]() ![]() |
The value function on
Value function for different
Optimal rent for different
Optimal effort for different
The consortium value function
The public value function
The optimal rent
The optimal effort