This paper studies an arbitrage-free, competitive and frictionless market with trading in a single risky asset and money market account, where the risky asset exhibits a price bubble. We analyze two sets of self-financing and admissible trading strategies in this market. The first are simple trading strategies, and the second are trading strategies that replicate or super-replicate the risky asset's payoffs at the model's horizon. We show that in both sets there exist wealth preserving trading strategies, i.e. trading strategies whose initial value equals the present value of its future cash flows. And, in the second set, we show that there are wealth preserving replicating trading strategies that dominate buying and holding the risky asset. The practical applications of these insights are discussed.
Citation: |
[1] |
A. Cherny, Families of consistent probability measures, Theory of Probability and Its Applications, 46 (2002), 118-121.
![]() |
[2] |
A. Cox and D. Hobson, Local martingales, bubbles and option prices, Finance Stoch., 9 (2005), 477-492.
doi: 10.1007/s00780-005-0162-y.![]() ![]() ![]() |
[3] |
H. Dengler and R. Jarrow, Option pricing using a binomial model with random time steps (a formal model of gamma hedging), Review of Derivatives Research, 1 (1997), 107-138.
![]() |
[4] |
L. Eisenberg and R. Jarrow, Option pricing with random volatilities in complete markets, Review of Quantitative Finance and Accounting, 4 (1994), 5-17.
![]() |
[5] |
H. Föllmer and Y. M. Kabanov, Optional decomposition and lagrange multipliers, Finance Stoch., 2 (1998), 69-81.
doi: 10.1007/s007800050033.![]() ![]() ![]() |
[6] |
M. Herdegen and S. Herrmann, Strict local martingales and optimal investment in a Black–Scholes model with a bubble, Math. Finance, 29 (2019), 285-328.
doi: 10.1111/mafi.12175.![]() ![]() ![]() |
[7] |
M. Herdegen and M. Schweizer, Economics-based Financial Bubbles (and why they imply strict local martingales) (No. 15-05), Swiss Finance Institute, 2015.
![]() |
[8] |
S. L. Heston, M. Loewenstein and G. A. Willard, Options and bubbles, Rev. Financial Stud., 20 (2007), 359-390.
![]() |
[9] |
J. Jacod and P. Protter, Risk neutral compatibility with option prices, Finance Stoch., 14 (2010), 285-315.
doi: 10.1007/s00780-009-0109-9.![]() ![]() ![]() |
[10] |
R. Jarrow, Asset price bubbles, Annual Review of Financial Economics, 7 (2015), 201-218.
![]() |
[11] |
R. Jarrow, On the existence of competitive equilibrium in frictionless and incomplete stochastic asset markets, Math. Financ. Econ., 11 (2017), 455-477.
doi: 10.1007/s11579-017-0190-3.![]() ![]() ![]() |
[12] |
R. Jarrow, Continuous-time Asset Pricing Theory: A Martingale-Based Approach, 2$^{nd}$ edition, Springer, 2021.
doi: 10.1007/978-3-030-74410-6.![]() ![]() ![]() |
[13] |
R. Jarrow, Y. Kchia and P. Protter, How to detect an asset bubble, SIAM J.Financ. Math, 2 (2011), 839-865.
doi: 10.1137/10079673X.![]() ![]() ![]() |
[14] |
R. Jarrow and S. Kwok, Inferring financial bubbles from option data, J. Appl. Econometrics, 36 (2021), 1031-1046.
doi: 10.1002/jae.2862.![]() ![]() ![]() |
[15] |
R. Jarrow and M. Larsson, The meaning of market efficiency, Math. Finance, 22 (2012), 1-30.
doi: 10.1111/j.1467-9965.2011.00497.x.![]() ![]() ![]() |
[16] |
R. Jarrow and Y. Liu, Portfolio Optimization in the Presence of Asset Price Bubbles, Working Paper, Cornell University, 2022, .
![]() |
[17] |
R. Jarrow, P. Protter and K. Shimbo, Asset price bubbles in complete markets, in Advances in Mathematical Finance, Appl. Numer. Harmon. Anal., Birkhauser Boston, Boston, MA, (2007), 97-121.
doi: 10.1007/978-0-8176-4545-8_7.![]() ![]() ![]() |
[18] |
R. Jarrow, P. Protter and K. Shimbo, Asset price bubbles in incomplete markets, Math. Finance, 20 (2010), 145-185.
doi: 10.1111/j.1467-9965.2010.00394.x.![]() ![]() ![]() |
[19] |
I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1988.
doi: 10.1007/978-1-4684-0302-2.![]() ![]() ![]() |
[20] |
V. Linetsky and R. Mendoza, Constant Elasticity of Variance (cev) Diffusion Model, Encyclopedia of Quantitative Finance, 2010.
![]() |
[21] |
M. Loewenstein and G. A. Willard, Local martingales, arbitrage, and viability. Free snacks and cheap thrills, Economic Theory, 16 (2000), 135-161.
doi: 10.1007/s001990050330.![]() ![]() ![]() |
[22] |
M. Loewenstein and G. A. Willard, Rational equilibrium asset-pricing bubbles in continuous trading models, J. Economic Theory, 91 (2000), 17-58.
doi: 10.1006/jeth.1999.2589.![]() ![]() ![]() |
[23] |
A. Mijatovic and M. Urusov, On the martingale property of certain local martingales, Probab. Theory Relat. Fields, 152 (2012), 1-30.
doi: 10.1007/s00440-010-0314-7.![]() ![]() ![]() |
[24] |
D. Nualart, The Malliavin Calculus and Related Topics, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2006.
![]() ![]() |
[25] |
Y. Obayashi, P. Protter and S. Yang, The lifetime of a financial bubble, Math. Finan. Econ., 11 (2017), 45-62.
doi: 10.1007/s11579-016-0170-z.![]() ![]() ![]() |
[26] |
P. Protter, A mathematical theory of financial bubbles, Paris-Princeton Lectures on Mathematical Finance, 2081 (2013), 1-108.
doi: 10.1007/978-3-319-00413-6_1.![]() ![]() ![]() |
[27] |
D. Schwarz, Market completion with derivative securities, Finance Stoch., 21 (2017), 263-284.
doi: 10.1007/s00780-016-0317-z.![]() ![]() ![]() |
[28] |
M. Schweizer and J. Wissel, Term structures of implied volatilities: Absence of arbitrage and existence results, Math. Finance, 18 (2008), 77-114.
doi: 10.1111/j.1467-9965.2007.00323.x.![]() ![]() ![]() |