We explicitly construct the supermartingale version of the Fréchet-Hoeffding coupling in the setting with infinitely many marginal constraints. This extends the results of Henry-Labordère et al. [
Citation: |
[1] | B. Acciaio, M. Beiglböck and G. Pammer, Weak transport for non-convex costs and model-independence in a fixed-income market, Mathematical Finance, 31 (2021), 1423-1453. doi: 10.1111/mafi.12328. |
[2] | J. Backhoff-Veraguas, M. Beiglböck, M. Huesmann and S. Källblad, Martingale benamou–brenier: a probabilistic perspective, The Annals of Probability, 48 (2020), 2258-2289. doi: 10.1214/20-AOP1422. |
[3] | J. Backhoff-Veraguas and G. Pammer, Stability of martingale optimal transport and weak optimal transport, The Annals of Applied Probability, 32 (2022), 721-752. doi: 10.1214/21-aap1694. |
[4] | E. Bayraktar, S. Deng and D. Norgilas, A potential-based construction of the increasing supermartingale coupling, arXiv preprint, (2021), arXiv: 2108.03450, (to appear in the Annals of Applied Probability). |
[5] | E. Bayraktar, S. Deng and D. Norgilas, Supermartingale shadow couplings: The decreasing case, arXiv preprint, (2022), arXiv: 2207.11732, (to appear in Bernoulli). |
[6] | M. Beiglböck, A. M. G. Cox and M. Huesmann, Optimal transport and skorokhod embedding, Inventiones Mathematicae, 208 (2017), 327-400. doi: 10.1007/s00222-016-0692-2. |
[7] | M. Beiglböck, A. M. G. Cox and M. Huesmann, The geometry of multi-marginal skorokhod embedding, Probability Theory and Related Fields, 176 (2020), 1045-1096. doi: 10.1007/s00440-019-00935-z. |
[8] | M. Beiglböck, P. Henry-Labordere and F. Penkner, Model-independent bounds for option prices–A mass transport approach, Finance and Stochastics, 17 (2013), 477-501. doi: 10.1007/s00780-013-0205-8. |
[9] | M. Beiglböck, P. Henry-Labordère and N. Touzi, Monotone martingale transport plans and skorokhod embedding, Stochastic Processes and their Applications, 127 (2017), 3005-3013. doi: 10.1016/j.spa.2017.01.004. |
[10] | M. Beiglböck, D. Hobson and D. Norgilas, The potential of the shadow measure, Electronic Communications in Probability, 27 (2022), Paper No. 16, 12 pp. doi: 10.1214/22-ecp457. |
[11] | M. Beiglböck, B. Jourdain, W. Margheriti and G. Pammer, Approximation of martingale couplings on the line in the weak adapted topology, arXiv preprint, (2021), arXiv: 2101.02517. doi: 10.1007/s00440-021-01103-y. |
[12] | M. Beiglböck and N. Juillet, On a problem of optimal transport under marginal martingale constraints, The Annals of Probability, 44 (2016), 42-106. doi: 10.1214/14-AOP966. |
[13] | M. Beiglböck and N. Juillet, Shadow couplings, Transactions of the American Mathematical Society, 374 (2021), 4973-5002. doi: 10.1090/tran/8380. |
[14] | M. Beiglböck and M. Nutz, Martingale inequalities and deterministic counterparts, Electronic Journal of Probability, 19 (2014), 1-15. doi: 10.1214/EJP.v19-3270. |
[15] | M. Beiglböck, M. Nutz and F. Stebegg, Fine properties of the optimal skorokhod embedding problem, Journal of the European Mathematical Society, 24 (2021), 1389-1429. doi: 10.4171/JEMS/1122. |
[16] | M. Beiglböck, M. Nutz and N. Touzi, Complete duality for martingale optimal transport on the line, The Annals of Probability, 45 (2017), 3038-3074. doi: 10.1214/16-AOP1131. |
[17] | D. T. Breeden and R. H. Litzenberger, Prices of state-contingent claims implicit in option prices, Journal of Business, (1978), 621-651. doi: 10.1086/296025. |
[18] | Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics, 44 (1991), 375-417. doi: 10.1002/cpa.3160440402. |
[19] | H. Brown, D. Hobson and L. C. G. Rogers, Robust hedging of barrier options, Mathematical Finance, 11 (2001), 285-314. doi: 10.1111/1467-9965.00116. |
[20] | M. Brückerhoff, M. Huesmann and N. Juillet, Shadow martingales–A stochastic mass transport approach to the peacock problem, Electronic Journal of Probability, 27 (2022), 1-62. doi: 10.1214/22-ejp846. |
[21] | L. Campi, I. Laachir and C. Martini, Change of numeraire in the two-marginals martingale transport problem, Finance and Stochastics, 21 (2017), 471-486. doi: 10.1007/s00780-016-0322-2. |
[22] | P. Carr, H. Geman, D. B. Madan and M. Yor, From local volatility to local lévy models, Quantitative Finance, 4 (2004), 581-588. doi: 10.1080/14697680400000039. |
[23] | A. M. G. Cox, D. Hobson and J. Obłój, Pathwise inequalities for local time: Applications to skorokhod embeddings and optimal stopping, The Annals of Applied Probability, 18 (2008), 1870-1896. doi: 10.1214/07-AAP507. |
[24] | A. M. G. Cox and D. G. Hobson, Skorokhod embeddings, minimality and non-centred target distributions, Probability Theory and Related Fields, 135 (2006), 395-414. doi: 10.1007/s00440-005-0467-y. |
[25] | A. M. G. Cox and J. Obłój, Robust pricing and hedging of double no-touch options, Finance and Stochastics, 15 (2011), 573-605. doi: 10.1007/s00780-011-0154-z. |
[26] | A. M. G. Cox and J. Obłój, On joint distributions of the maximum, minimum and terminal value of a continuous uniformly integrable martingale, Stochastic Processes and their Applications, 125 (2015), 3280-3300. doi: 10.1016/j.spa.2015.03.005. |
[27] | A. M. G. Cox, J. Obłój and N. Touzi, The root solution to the multi-marginal embedding problem: An optimal stopping and time-reversal approach, Probability Theory and Related Fields, 173 (2019), 211-259. doi: 10.1007/s00440-018-0833-1. |
[28] | A. M. G. Cox and J. Wang, Root's barrier: Construction, optimality and applications to variance options, The Annals of Applied Probability, 23 (2013), 859-894. doi: 10.1214/12-AAP857. |
[29] | M. Davis, J. Obłój and V. Raval, Arbitrage bounds for prices of weighted variance swaps, Mathematical Finance, 24 (2014), 821-854. doi: 10.1111/mafi.12021. |
[30] | S. De Marco and P. Henry-Labordere, Linking vanillas and vix options: A constrained martingale optimal transport problem, SIAM Journal on Financial Mathematics, 6 (2015), 1171-1194. doi: 10.1137/140960724. |
[31] | Y. Dolinsky and H. M. Soner, Martingale optimal transport and robust hedging in continuous time, Probability Theory and Related Fields, 160 (2014), 391-427. doi: 10.1007/s00440-013-0531-y. |
[32] | Y. Dolinsky and H. M. Soner, Martingale optimal transport in the skorokhod space, Stochastic Processes and their Applications, 125 (2015), 3893-3931. doi: 10.1016/j.spa.2015.05.009. |
[33] | C.-O. Ewald and M. Yor, On peacocks and lyrebirds: Australian options, brownian bridges, and the average of submartingales, Mathematical Finance, 28 (2018), 536-549. doi: 10.1111/mafi.12144. |
[34] | A. Fahim and Y.-J. Huang, Model-independent superhedging under portfolio constraints, Finance and Stochastics, 20 (2016), 51-81. doi: 10.1007/s00780-015-0284-9. |
[35] | H. Föllmer, Calcul d'itô sans probabilités, Séminaire de Probabilités, XV(Univ. Strasbourg, Strasbourg, 1979/1980), Lecture Notes in Math., Springer, Berlin, 850 (1981), 143-150. |
[36] | A. Galichon, P. Henry-Labordere and N. Touzi, A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options, The Annals of Applied Probability, 24 (2014), 312-336. doi: 10.1214/13-AAP925. |
[37] | P. Gassiat, H. Oberhauser and G. Dos Reis, Root's barrier, viscosity solutions of obstacle problems and reflected fbsdes, Stochastic Processes and Their Applications, 125 (2015), 4601-4631. doi: 10.1016/j.spa.2015.07.010. |
[38] | G. Guo, X. Tan and N. Touzi, On the monotonicity principle of optimal skorokhod embedding problem, SIAM Journal on Control and Optimization, 54 (2016), 2478-2489. doi: 10.1137/15M1025268. |
[39] | G. Guo, X. Tan and N. Touzi, Optimal skorokhod embedding under finitely many marginal constraints, SIAM Journal on Control and Optimization, 54 (2016), 2174-2201. doi: 10.1137/15M1025256. |
[40] | G. Guo, X. Tan and N. Touzi, Tightness and duality of martingale transport on the skorokhod space, Stochastic Processes and their Applications, 127 (2017), 927-956. doi: 10.1016/j.spa.2016.07.005. |
[41] | P. Henry-Labordère, X. Tan and N. Touzi, An explicit martingale version of the one-dimensional brenier's theorem with full marginals constraint, Stochastic Processes and Their Applications, 126 (2016), 2800-2834. doi: 10.1016/j.spa.2016.03.003. |
[42] | P. Henry-Labordère and N. Touzi, An explicit martingale version of the one-dimensional brenier theorem, Finance and Stochastics, 20 (2016), 635-668. doi: 10.1007/s00780-016-0299-x. |
[43] | F. Hirsch, C. Profeta, B. Roynette and M. Yor, Peacocks and Associated Martingales, with Explicit Constructions, Bocconi & Springer Series, 3. Springer, Milan; Bocconi University Press, Milan, 2011. doi: 10.1007/978-88-470-1908-9. |
[44] | D. Hobson, The skorokhod embedding problem and model-independent bounds for option prices, Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., Springer, Berlin, 2003 (2021), 267-318. doi: 10.1007/978-3-642-14660-2_4. |
[45] | D. Hobson and M. Klimmek, Model-independent hedging strategies for variance swaps, Finance and Stochastics, 16 (2012), 611-649. doi: 10.1007/s00780-012-0190-3. |
[46] | D. Hobson and A. Neuberger, Robust bounds for forward start options, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 22 (2012), 31-56. doi: 10.1111/j.1467-9965.2010.00473.x. |
[47] | D. Hobson and D. Norgilas, Robust bounds for the american put, Finance and Stochastics, 23 (2019), 359-395. doi: 10.1007/s00780-019-00385-4. |
[48] | D. Hobson and D. Norgilas, A construction of the left-curtain coupling, Electronic Journal of Probability, 27 (2022), Paper No. 147, 46 pp. doi: 10.1214/22-ejp868. |
[49] | D. G. Hobson, Robust hedging of the lookback option, Finance and Stochastics, 2 (1998), 329-347. doi: 10.1007/s007800050044. |
[50] | D. G. Hobson and D. Norgilas, The left-curtain martingale coupling in the presence of atoms, The Annals of Applied Probability, 29 (2019), 1904-1928. doi: 10.1214/18-AAP1450. |
[51] | J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren der mathematischen Wissenschaften, 288. Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-662-02514-7. |
[52] | N. Juillet, Martingales associated to peacocks using the curtain coupling, Electronic Journal of Probability, 23 (2018), Paper No. 8, 29 pp. doi: 10.1214/18-EJP138. |
[53] | S. Källblad, X. Tan and N. Touzi, Optimal skorokhod embedding given full marginals and Azéma-Yor peacocks, The Annals of Applied Probability, 27 (2017), 686-719. doi: 10.1214/16-AAP1191. |
[54] | R. L. Karandikar, On pathwise stochastic integration, Stochastic Processes and Their Aapplications, 57 (1995), 11-18. doi: 10.1016/0304-4149(95)00002-O. |
[55] | H. G. Kellerer, Markov-komposition und eine anwendung auf martingale, Mathematische Annalen, 198 (1972), 99-122. doi: 10.1007/BF01432281. |
[56] | D. B. Madan and M. Yor, Making markov martingales meet marginals: With explicit constructions, Bernoulli, 8 (2002), 509-536. |
[57] | M. Nutz and F. Stebegg, Canonical supermartingale couplings, The Annals of Probability, 46 (2018), 3351-3398. doi: 10.1214/17-AOP1249. |
[58] | M. Nutz, F. Stebegg and X. Tan, Multiperiod martingale transport, Stochastic Processes and their Applications, 130 (2020), 1568-1615. doi: 10.1016/j.spa.2019.05.010. |
[59] | J. Obłój, The skorokhod embedding problem and its offspring, Probability Surveys, 1 (2004), 321-392. |
[60] | J. Obłój and P. Spoida, An iterated az\'{e} ma-yor type embedding for finitely many marginals, arXiv preprint, (2013), arXiv: 1304.0368. |
[61] | S. T. Rachev and L. Rüschendorf, Mass Transportation Problems. Volume I. Theory, Springer Science & Business Media, 1998. |
[62] | V. Strassen, The existence of probability measures with given marginals, The Annals of Mathematical Statistics, 36 (1965), 423-439. doi: 10.1214/aoms/1177700153. |
[63] | J. Wiesel, Continuity of the martingale optimal transport problem on the real line, arXiv preprint, (2019), arXiv: 1905.04574. |