\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Distributed energy resources flexibility as volumetric options on electricity

  • *Corresponding author: Yuanye Ma

    *Corresponding author: Yuanye Ma

The authors are supported by [U.S. Department of Energy Advanced Research Projects Agency–Energy Award No. DE-AR001274 and Work Authorization No. 19/CJ000/07/08]

Abstract Full Text(HTML) Figure(4) / Table(4) Related Papers Cited by
  • The goal of the paper is twofold: a) following the identification of the merits of Distributed Energy Resources (DERs) by FERC 2222 for the flexibility they bring to the grid, we recognize water heaters and thermostats as mini-batteries and introduce volumetric/swing options that the Aggregator can sell by shifting consumers' consumption while rewarding them; b) We propose to address the pricing complexity of these volumetric options - which are in our setting very general in terms of number of exercises and quantities constraints - by a novel approach that combines Monte Carlo simulations and Recurrent Neural Networks (RNN).

    Mathematics Subject Classification: 68T07, 68T09, 60H15, 90C39.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Histogram of control durations in the PE dataset

    Figure 2.  Examples of average consumption in the PE dataset

    Figure 3.  Ground truth versus fitted value of the electricity price $ S_t $

    Figure 4.  Five simualted electricity price paths for 10/01/2021 from 12AM to 5PM

    Table 1.  Summary of control types in the Packetized Energy dataset

    Number of Days with Control Control Time Range Control Duration
    119 1:30pm to 6:15pm 3 to 4.75 hours
    118 5pm to 9:15pm 2 to 4 hours
    106 5pm to 8:15pm 0.25 to 1 hour
     | Show Table
    DownLoad: CSV

    Table 2.  Summary of Delta obtained from the RNN

    8AM 9AM 10AM 11AM 12PM 1PM 2PM 3PM 4PM 5PM
    $ \Delta_t $ 5.10 1.12 0.77 0.82 0.32 1.81 15.87 1640.6 1057.7 1378.0
     | Show Table
    DownLoad: CSV

    Table 3.  Linearity scaling of the volumetric option in the EcoBee dataset

    Scale $ c $ 100 10 4 2 1 0.5 0.25 0.1 0.01
    Revenue
    Scaled
    by $ c^{\prime} $ 100 9.99 3.99 1.99 1 0.501 0.244 0.0992 0.0100
    $ c/c^{\prime} $ 1 0.999 0.9975 0.995 1 1.002 0.976 0.992 1
     | Show Table
    DownLoad: CSV

    Table 4.  Linearity scaling of the volumetric option in the PE dataset

    Scale $ c $ 100 10 4 2 1 0.5 0.25 0.1 0.01
    Revenue
    Scaled
    by $ c^{\prime} $ 99.7 9.98 4.04 2.01 1 0.505 0.251 0.0993 0.00999
    $ c/c^{\prime} $ 0.997 0.998 1.01 1.005 1 1.01 1.004 0.993 0.999
     | Show Table
    DownLoad: CSV
  • [1] O. BardouS. Bouthemy and G. Pagès, When are swing options bang-bang?, International Journal of Theoretical and Applied Finance, 13 (2010), 867-899.  doi: 10.1142/S0219024910006030.
    [2] C. Barrera-EsteveF. BergeretC. DossalE. GobetA. MeziouR. Munos and D. Reboul-Salze, Numerical methods for the pricing of swing options: A stochastic control approach, Methodology and Computing in Applied Probability, 8 (2006), 517-540.  doi: 10.1007/s11009-006-0427-8.
    [3] R. Carmona and N. Touzi, Optimal multiple stopping and valuation of swing options, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 18 (2008), 239-268.  doi: 10.1111/j.1467-9965.2007.00331.x.
    [4] P. CarrH. GemanD. B. Madan and M. Yor, Pricing options on realized variance, Finance and Stochastics, 9 (2005), 453-475.  doi: 10.1007/s00780-005-0155-x.
    [5] J. F. Carriere, Valuation of the early-exercise price for options using simulations and nonparametric regression, Insurance: Mathematics and Economics, 19 (1996), 19-30.  doi: 10.1016/S0167-6687(96)00004-2.
    [6] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals and Systems, 2 (1989), 303-314.  doi: 10.1007/BF02551274.
    [7] R. Daluiso, E. Nastasi, A. Pallavicini and G. Sartorelli, Pricing commodity swing options, Available at SSRN 3524802. doi: 10.2139/ssrn.3524802.
    [8] T. Deschatre and J. Mikael, Deep combinatorial optimisation for optimal stopping time problems: Application to swing options pricing, MathS in Action, 11 (2022), 243Ƀ258, arXiv: 2001.11247. doi: 10.5802/msia.26.
    [9] H. Geman and S. Kourouvakalis, A lattice-based method for pricing electricity derivatives under the threshold model, Applied Mathematical Finance, 15 (2008), 531-567.  doi: 10.1080/13504860802379835.
    [10] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, (2010), 249-256.
    [11] G. Haarbr{ü}cker and D. Kuhn, Valuation of electricity swing options by multistage stochastic programming, Automatica J. IFAC, 45 (2009), 889-899.  doi: 10.1016/j.automatica.2008.11.022.
    [12] J. Han and W. E, Deep learning approximation for stochastic control problems, arXiv preprint, arXiv: 1611.07422.
    [13] B. Hanin and M. Sellke, Approximating continuous functions by relu nets of minimal width, arXiv preprint, arXiv: 1710.11278.
    [14] P. Henry-Labordere, Optimal posting of collateral with recurrent neural networks, Available at SSRN 3140327. doi: 10.2139/ssrn.3140327.
    [15] P. JailletE. I. Ronn and S. Tompaidis, Valuation of commodity-based swing options, Management Science, 50 (2004), 909-921.  doi: 10.1287/mnsc.1040.0240.
    [16] P. Kidger and T. Lyons, Universal approximation with deep narrow networks, Conference on Learning Theory, PMLR, (2020), 2306-2327.
    [17] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980.
    [18] A. Lari-LavassaniM. Simchi and A. Ware, A discrete valuation of swing options, Canadian Applied Mathematics Quarterly, 9 (2001), 35-73. 
    [19] J. Lars Kirkby and S.-J. Deng, Swing option pricing by dynamic programming with b-spline density projection, International Journal of Theoretical and Applied Finance, 22 (2019), 1950038, 53 pp. doi: 10.1142/S0219024919500389.
    [20] F. A. Longstaff and E. S. Schwartz, Valuing american options by simulation: A simple least-squares approach, The Review of Financial Studies, 14 (2001), 113-147.  doi: 10.1093/rfs/14.1.113.
    [21] S. Majd and R. S. Pindyck, Time to build, option value, and investment decisions, Journal of Financial Economics, 18 (1987), 7-27.  doi: 10.3386/w1654.
    [22] S. NadarajahF. Margot and N. Secomandi, Comparison of least squares monte carlo methods with applications to energy real options, European Journal of Operational Research, 256 (2017), 196-204.  doi: 10.1016/j.ejor.2016.06.020.
    [23] R. S. Pindyck, Options, Flexibility and Investment Decisions, Massachusetts Institute of Technology, Center for Energy Policy Research, 1988.
    [24] P. R. Winters, Forecasting sales by exponentially weighted moving averages, Management Science, 6 (1960), 324-342.  doi: 10.1287/mnsc.6.3.324.
    [25] B. Zhang and C. W. Oosterlee, An efficient pricing algorithm for swing options based on fourier cosine expansions, Journal of Computational Finance, 16 (2013), 3-34.  doi: 10.21314/JCF.2013.268.
  • 加载中
Open Access Under a Creative Commons license

Figures(4)

Tables(4)

SHARE

Article Metrics

HTML views(734) PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return