Number of Days with Control | Control Time Range | Control Duration |
119 | 1:30pm to 6:15pm | 3 to 4.75 hours |
118 | 5pm to 9:15pm | 2 to 4 hours |
106 | 5pm to 8:15pm | 0.25 to 1 hour |
The goal of the paper is twofold: a) following the identification of the merits of Distributed Energy Resources (DERs) by FERC 2222 for the flexibility they bring to the grid, we recognize water heaters and thermostats as mini-batteries and introduce volumetric/swing options that the Aggregator can sell by shifting consumers' consumption while rewarding them; b) We propose to address the pricing complexity of these volumetric options - which are in our setting very general in terms of number of exercises and quantities constraints - by a novel approach that combines Monte Carlo simulations and Recurrent Neural Networks (RNN).
Citation: |
Table 1. Summary of control types in the Packetized Energy dataset
Number of Days with Control | Control Time Range | Control Duration |
119 | 1:30pm to 6:15pm | 3 to 4.75 hours |
118 | 5pm to 9:15pm | 2 to 4 hours |
106 | 5pm to 8:15pm | 0.25 to 1 hour |
Table 2. Summary of Delta obtained from the RNN
8AM | 9AM | 10AM | 11AM | 12PM | 1PM | 2PM | 3PM | 4PM | 5PM | |
5.10 | 1.12 | 0.77 | 0.82 | 0.32 | 1.81 | 15.87 | 1640.6 | 1057.7 | 1378.0 |
Table 3. Linearity scaling of the volumetric option in the EcoBee dataset
Scale |
100 | 10 | 4 | 2 | 1 | 0.5 | 0.25 | 0.1 | 0.01 |
Revenue | |||||||||
Scaled | |||||||||
by |
100 | 9.99 | 3.99 | 1.99 | 1 | 0.501 | 0.244 | 0.0992 | 0.0100 |
1 | 0.999 | 0.9975 | 0.995 | 1 | 1.002 | 0.976 | 0.992 | 1 |
Table 4. Linearity scaling of the volumetric option in the PE dataset
Scale |
100 | 10 | 4 | 2 | 1 | 0.5 | 0.25 | 0.1 | 0.01 |
Revenue | |||||||||
Scaled | |||||||||
by |
99.7 | 9.98 | 4.04 | 2.01 | 1 | 0.505 | 0.251 | 0.0993 | 0.00999 |
0.997 | 0.998 | 1.01 | 1.005 | 1 | 1.01 | 1.004 | 0.993 | 0.999 |
[1] | O. Bardou, S. Bouthemy and G. Pagès, When are swing options bang-bang?, International Journal of Theoretical and Applied Finance, 13 (2010), 867-899. doi: 10.1142/S0219024910006030. |
[2] | C. Barrera-Esteve, F. Bergeret, C. Dossal, E. Gobet, A. Meziou, R. Munos and D. Reboul-Salze, Numerical methods for the pricing of swing options: A stochastic control approach, Methodology and Computing in Applied Probability, 8 (2006), 517-540. doi: 10.1007/s11009-006-0427-8. |
[3] | R. Carmona and N. Touzi, Optimal multiple stopping and valuation of swing options, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 18 (2008), 239-268. doi: 10.1111/j.1467-9965.2007.00331.x. |
[4] | P. Carr, H. Geman, D. B. Madan and M. Yor, Pricing options on realized variance, Finance and Stochastics, 9 (2005), 453-475. doi: 10.1007/s00780-005-0155-x. |
[5] | J. F. Carriere, Valuation of the early-exercise price for options using simulations and nonparametric regression, Insurance: Mathematics and Economics, 19 (1996), 19-30. doi: 10.1016/S0167-6687(96)00004-2. |
[6] | G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals and Systems, 2 (1989), 303-314. doi: 10.1007/BF02551274. |
[7] | R. Daluiso, E. Nastasi, A. Pallavicini and G. Sartorelli, Pricing commodity swing options, Available at SSRN 3524802. doi: 10.2139/ssrn.3524802. |
[8] | T. Deschatre and J. Mikael, Deep combinatorial optimisation for optimal stopping time problems: Application to swing options pricing, MathS in Action, 11 (2022), 243Ƀ258, arXiv: 2001.11247. doi: 10.5802/msia.26. |
[9] | H. Geman and S. Kourouvakalis, A lattice-based method for pricing electricity derivatives under the threshold model, Applied Mathematical Finance, 15 (2008), 531-567. doi: 10.1080/13504860802379835. |
[10] | X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, (2010), 249-256. |
[11] | G. Haarbr{ü}cker and D. Kuhn, Valuation of electricity swing options by multistage stochastic programming, Automatica J. IFAC, 45 (2009), 889-899. doi: 10.1016/j.automatica.2008.11.022. |
[12] | J. Han and W. E, Deep learning approximation for stochastic control problems, arXiv preprint, arXiv: 1611.07422. |
[13] | B. Hanin and M. Sellke, Approximating continuous functions by relu nets of minimal width, arXiv preprint, arXiv: 1710.11278. |
[14] | P. Henry-Labordere, Optimal posting of collateral with recurrent neural networks, Available at SSRN 3140327. doi: 10.2139/ssrn.3140327. |
[15] | P. Jaillet, E. I. Ronn and S. Tompaidis, Valuation of commodity-based swing options, Management Science, 50 (2004), 909-921. doi: 10.1287/mnsc.1040.0240. |
[16] | P. Kidger and T. Lyons, Universal approximation with deep narrow networks, Conference on Learning Theory, PMLR, (2020), 2306-2327. |
[17] | D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980. |
[18] | A. Lari-Lavassani, M. Simchi and A. Ware, A discrete valuation of swing options, Canadian Applied Mathematics Quarterly, 9 (2001), 35-73. |
[19] | J. Lars Kirkby and S.-J. Deng, Swing option pricing by dynamic programming with b-spline density projection, International Journal of Theoretical and Applied Finance, 22 (2019), 1950038, 53 pp. doi: 10.1142/S0219024919500389. |
[20] | F. A. Longstaff and E. S. Schwartz, Valuing american options by simulation: A simple least-squares approach, The Review of Financial Studies, 14 (2001), 113-147. doi: 10.1093/rfs/14.1.113. |
[21] | S. Majd and R. S. Pindyck, Time to build, option value, and investment decisions, Journal of Financial Economics, 18 (1987), 7-27. doi: 10.3386/w1654. |
[22] | S. Nadarajah, F. Margot and N. Secomandi, Comparison of least squares monte carlo methods with applications to energy real options, European Journal of Operational Research, 256 (2017), 196-204. doi: 10.1016/j.ejor.2016.06.020. |
[23] | R. S. Pindyck, Options, Flexibility and Investment Decisions, Massachusetts Institute of Technology, Center for Energy Policy Research, 1988. |
[24] | P. R. Winters, Forecasting sales by exponentially weighted moving averages, Management Science, 6 (1960), 324-342. doi: 10.1287/mnsc.6.3.324. |
[25] | B. Zhang and C. W. Oosterlee, An efficient pricing algorithm for swing options based on fourier cosine expansions, Journal of Computational Finance, 16 (2013), 3-34. doi: 10.21314/JCF.2013.268. |
Histogram of control durations in the PE dataset
Examples of average consumption in the PE dataset
Ground truth versus fitted value of the electricity price
Five simualted electricity price paths for 10/01/2021 from 12AM to 5PM