[1]
|
C. Acerbi and B. Székely, Backtesting expected shortfall, RISK, 2014.
|
[2]
|
C. Acerbi and B. Székely, General properties of backtestable statistics, SSRN, preprint, 2017.
|
[3]
|
C. Acerbi and B. Székely, The minimally biased backtest for expected shortfall, RISK, 2019.
|
[4]
|
C. Acerbi and D. Tasche, On the coherence of expected shortfall, Journal of Banking and Finance, 26 (2002), 1487-1503.
|
[5]
|
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068.
|
[6]
|
Amendment to the Capital Accord to Incorporate Market Risks, Basel Committee on Banking Supervision, 1996. Available from: http://www.bis.org/publ/bcbs24.pdf.
|
[7]
|
, Fundamental Review of the Trading Book: A Revised Market Risk Framework, Basel Committee on Banking Supervision, 2013. Consultative paper.
|
[8]
|
Minimum Capital Requirements for Market Risk, Basel Committee on Banking Supervision, 2019. Available from: http://www.bis.org/bcbs/publ/d457.pdf.
|
[9]
|
S. Bayer and T. Dimitriadis, Regression based expected shortfall backtesting, Journal of Financial Econometrics, 20 (2022), 437-471.
doi: 10.1093/jjfinec/nbaa013.
|
[10]
|
F. Bellini, B. Klar, A. Müller and E. Rosazza Gianin, Generalized quantiles as risk measures, Insurance: Mathematics and Economics, 54 (2014), 41-48.
doi: 10.1016/j.insmatheco.2013.10.015.
|
[11]
|
N. Costanzino and M. Curran, Backtesting general spectral risk measures with application to expected shortfall, SSRN, preprint, 2015.
|
[12]
|
N. Costanzino and M. Curran, A simple traffic light approach to backtesting expected shortfall, Risks, 6 (2018), 1-7.
doi: 10.3390/risks6010002.
|
[13]
|
Z. Du and J. C. Escanciano, Backtesting expected shortfall: Accounting for tail risk, Management Science, 63 (2017), 940-958.
doi: 10.1287/mnsc.2015.2342.
|
[14]
|
S. Emmer, M. Kratz and D. Tasche, What is the best risk measure in practice? A comparison of standard measures, The Journal of Risk, 18 (2015), 31-60.
doi: 10.21314/JOR.2015.318.
|
[15]
|
T. Fissler, T. Gneiting and J. F. Ziegel, Expected shortfall is jointly elicitable with value–at–risk: Implications for backtesting, RISK, 2015.
|
[16]
|
T. Fissler and J. F. Ziegel, Higher order elicitability and Osband's principle, Annals of Statistics, 44 (2016), 1680-1707.
doi: 10.1214/16-AOS1439.
|
[17]
|
T. Gneiting, Making and evaluating point forecasts, Journal of the American Statistical Association, 106 (2011), 746-762.
doi: 10.1198/jasa.2011.r10138.
|
[18]
|
Risk-based Global Insurance Capital Standard, International Association of Insurance Supervisors, 2014. Consultative paper. Available from: https://www.iaisweb.org/uploads/2022/01/Risk-based_Global_Insurance_Capital_Standard_Consultation_Document.pdf.pdf.
|
[19]
|
Risk-Based Global Insurance Capital Standard, International Association of Insurance Supervisors, 2016. Consultative paper, version 1.0. Available from: https://www.iaisweb.org/uploads/2022/01/160719-2016-Risk-based-Global-Insurance-Capital-Standard-ICS-Consultation-Document.pdf.
|
[20]
|
J. Kerkhof and B. Melenberg, Backtesting for Risk-Based Regulatory Capital, Journal of Banking and Finance, 28 (2004), 1845-1865.
doi: 10.1016/j.jbankfin.2003.06.007.
|
[21]
|
M. Kratz, Y. H. Lok and A. J. McNeil, Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall, Journal of Banking and Finance, 88 (2018), 393-407.
doi: 10.1016/j.jbankfin.2018.01.002.
|
[22]
|
N. Lambert, D. M. Pennock and Y. Shoham, Eliciting properties of probability distributions, Proceedings of the 9$^th$ ACM Conference on Electronic Commerce, EC 08, 2008,129-138.
doi: 10.1145/1386790.1386813.
|
[23]
|
R. Loser, D. Wied and D. Ziggel, New backtests for unconditional coverage of expected shortfall, Journal of Risk, 21 (2019), 39-59.
doi: 10.21314/JOR.2019.406.
|
[24]
|
A. J. McNeil and R. Frey, Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach, Journal of Empirical Finance, 7 (2000), 271-300.
doi: 10.1016/S0927-5398(00)00012-8.
|
[25]
|
F. Moldenhauer and M. Pitera, Backtesting Expected Shortfall: A simple recipe, Journal of Risk, 22 (2019), 17-42.
doi: 10.21314/JOR.2019.418.
|
[26]
|
W. K. Newey and J. L. Powell, Asymmetric least squares estimation and testing, Econometrica, 55 (1987), 819-847.
doi: 10.2307/1911031.
|
[27]
|
N. Nolde and J. F. Ziegel, Elicitability and backtesting: Perspectives for banking regulation, Annals of Applied Statistics, 11 (2017), 1833-1874.
doi: 10.1214/17-AOAS1041.
|
[28]
|
K. H. Osband, Providing Incentives for Better Cost Forecasting, Ph.D. thesis, University of California, Berkeley, 1985.
|
[29]
|
R. T. Rockafellar and S. Uryasev, Conditional Value–at–Risk for general loss distributions, Journal of Banking and Finance, 26 (2002), 1443-1471.
|
[30]
|
J. F. Ziegel, Coherence and elicitability, Mathematical Finance, 26 (2016), 901-918.
doi: 10.1111/mafi.12080.
|