[1]
|
C. Bayer, C. B. Hammouda, A. Papapantoleon, M. Samet and R. Tempone, Optimal damping with hierarchical adaptive quadrature for efficient fourier pricing of multi-asset options in lévy models, Journal of Computational Finance, 27 (2023), 43-86.
|
[2]
|
P. Carr and D. Madan, Option valuation using the fast fourier transform, Journal of Computational Finance, 2 (1999), 61-73.
doi: 10.21314/JCF.1999.043.
|
[3]
|
G. Castellacci and M. J. Siclari, The practice of delta–gamma var: Implementing the quadratic portfolio model, European Journal of Operational Research, 150 (2003), 529-545.
doi: 10.1016/S0377-2217(02)00782-8.
|
[4]
|
J. M. Corcuera, F. Guillaume, P. Leoni and W. Schoutens, Implied lévy volatility, Quantitative Finance, 9 (2009), 383-393.
doi: 10.1080/14697680902965548.
|
[5]
|
D. Duffie and J. Pan, Analytical value-at-risk with jumps and credit risk, Finance and Stochastics, 5 (2001), 155-180.
doi: 10.1007/PL00013531.
|
[6]
|
E. Eberlein, M. Eddahbi and S. Lalaoui Ben Cherif, Computation of Greeks in LIBOR models driven by time–inhomogeneous Lévy processes, Applied Mathematical Finance, 23 (2016), 236-260.
doi: 10.1080/1350486X.2016.1243013.
|
[7]
|
E. Eberlein, K. Glau and A. Papapantoleon, Analysis of Fourier transform valuation formulas and applications, Applied Mathematical Finance, 17 (2010), 211-240.
doi: 10.1080/13504860903326669.
|
[8]
|
F. Fang and C. W. Oosterlee, A novel pricing method for European options based on Fourier-cosine series expansions, SIAM Journal on Scientific Computing, 31 (2009a), 826-848.
doi: 10.1137/080718061.
|
[9]
|
H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time, Walter de Gruyter, 2011.
|
[10]
|
P. Glasserman, Monte Carlo Methods in Financial Engineering, Appl. Math. (N. Y.), 53, Stoch. Model. Appl. Probab., Springer-Verlag, New York, 2004.
|
[11]
|
G. Grubb, Distributions and Operators, Grad. Texts in Math., 252, Springer, New York, 2009.
|
[12]
|
S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327.
|
[13]
|
J. Hull, Options, Futures, and Other Derivatives, Eleventh edition, global edition edition, 2021.
|
[14]
|
G. Junike, On the number of terms in the COS method for European option pricing, Numerische Mathematik, 156 (2024), 533-564.
doi: 10.1007/s00211-024-01402-1.
|
[15]
|
G. Junike and K. Pankrashkin, Precise option pricing by the COS method–How to choose the truncation range, Applied Mathematics and Computation, 421 (2022), Paper No. 126935, 14 pp.
doi: 10.1016/j.amc.2022.126935.
|
[16]
|
U. Küchler and S. Tappe, On the shapes of bilateral Gamma densities, Statistics & Probability Letters, 78 (2008), 2478-2484.
|
[17]
|
Á. Leitao, C. W. Oosterlee, L. Ortiz-Gracia and S. M. Bohte, On the data-driven COS method, Applied Mathematics and Computation, 317 (2018), 68-84.
doi: 10.1016/j.amc.2017.09.002.
|
[18]
|
A. L. Lewis, A simple option formula for general jump-diffusion and other exponential Lévy processes, Available at SSRN 282110.
|
[19]
|
R. Lord, F. Fang, F. Bervoets and C. W. Oosterlee, A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes, SIAM Journal on Scientific Computing, 30 (2008), 1678-1705.
doi: 10.1137/070683878.
|
[20]
|
D. Madan and W. Schoutens, Applied Conic Finance, Cambridge University Press, Cambridge, 2016.
|
[21]
|
D. B. Madan, Adapted hedging, Annals of Finance, 12 (2016), 305-334.
doi: 10.1007/s10436-016-0282-8.
|
[22]
|
D. B. Madan, Efficient estimation of expected stock price returns, Finance Research Letters, 23 (2017), 31-38.
doi: 10.1016/j.frl.2017.08.001.
|
[23]
|
D. B. Madan, P. P. Carr and E. C. Chang, The variance gamma process and option pricing, Review of Finance, 2 (1998), 79-105.
doi: 10.1023/A:1009703431535.
|
[24]
|
J. R. Martins and A. Ning, Engineering Design Optimization, Cambridge University Press, 2021.
|
[25]
|
L. Ortiz-Gracia and C. W. Oosterlee, Robust pricing of European options with wavelets and the characteristic function, SIAM Journal on Scientific Computing, 35 (2013), B1055-B1084.
doi: 10.1137/130907288.
|
[26]
|
L. Ortiz-Gracia and C. W. Oosterlee, A highly efficient Shannon wavelet inverse Fourier technique for pricing European options, SIAM Journal on Scientific Computing, 38 (2016), B118-B143.
doi: 10.1137/15M1014164.
|
[27]
|
K. M. Owolabi and A. Atangana, Numerical Methods for Fractional Differentiation, Springer Ser. Comput. Math., 54, Springer, Singapore, 2019.
|
[28]
|
T. Sauer, Numerical Analysis, 2nd edition, Pearson Deutschland, 2013.
|
[29]
|
W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives, Wiley Online Library, 2003.
|
[30]
|
A. Takahashi and A. Yamazaki, Efficient static replication of European options under exponential Lévy models, Journal of Futures Markets: Futures, Options, and Other Derivative Products, 29 (2009), 1-15.
doi: 10.1002/fut.20339.
|