[1]
|
S. Banerjee, A. E. Gelfand, A. O. Finley and H. Sang, Gaussian predictive process models for large spatial data sets, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70 (2008), 825-848.
doi: 10.1111/j.1467-9868.2008.00663.x.
|
[2]
|
O. E. Barndorff-Nielsen and D. R. Cox, Asymptotic Techniques for Use in Statistics, Chapman & Hall Ltd, 1989.
doi: 10.1007/978-1-4899-3424-6.
|
[3]
|
N. Breslow and D. Clayton, Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88 (1993), 9-25.
|
[4]
|
M. Cameletti, F. Lindgren, D. Simpson and H. Rue, Spatio-temporal modeling of particulate matter concentration through the SPDE approach, AStA Advances in Statistical Analysis, 97 (2013), 109-131.
doi: 10.1007/s10182-012-0196-3.
|
[5]
|
O. F. Christensen, J. Møller and R. Waagepetersen, Analysis of Spatial Data Using Generalized Linear Mixed Models and Langevin-type Markov chain Monte Carlo, Technical report, Department of Mathematical Sciences, Aalborg University, 2000.
|
[6]
|
O. F. Christensen and R. Waagepetersen, Bayesian prediction of spatial count data using generalized linear mixed models, Biometrics, 58 (2002), 280-286.
doi: 10.1111/j.0006-341X.2002.00280.x.
|
[7]
|
O. F. Christensen, Monte Carlo maximum likelihood in model-based geostatistics, Journal of Computational and Graphical Statistics, 13 (2004), 702-718.
doi: 10.1198/106186004X2525.
|
[8]
|
O. F. Christensen and P. J. Ribeiro Jr, geoRglm: A package for generalised linear spatial models, R News, 2 (2002), 26-28.
|
[9]
|
P. Diggle, R. Moyeed, B. Rowlingson and M. Thomson, Childhood malaria in the Gambia: A case-study in model-based geostatistics, Journal of the Royal Statistical Society: Series C (Applied Statistics), 51 (2002), 493-506.
doi: 10.1111/1467-9876.00283.
|
[10]
|
P. J. Diggle, J. A. Tawn and R. A. Moyeed, Model-based geostatistics, Journal of the Royal Statistical Society: Series C (Applied Statistics), 47 (1998), 299-350.
doi: 10.1111/1467-9876.00113.
|
[11]
|
P. J. Diggle, M. C. Thomson, O. F. Christensen, B. Rowlingson, V. Obsomer, J. Gardon, S. Wanji, I. Takougang, P. Enyong, J. Kamgno, J. H. Remme, M. Boussinesq and D. H. Molyneux, Spatial modelling and the prediction of loa loa risk: decision making under uncertainty, Annals of Tropical Medicine and Parasitology, 101 (2007), 499-509.
|
[12]
|
J. Eidsvik, S. Martino and H. Rue, Approximate Bayesian inference in spatial generalized linear mixed models, Scandinavian Journal of Statistics, 36 (2009), 1-22.
doi: 10.1111/j.1467-9469.2008.00621.x.
|
[13]
|
J. Eidsvik, A. O. Finley, S. Banerjee and H. Rue, Approximate bayesian inference for large spatial datasets using predictive process models, Computational Statistics & Data Analysis, 56 (2012), 1362-1380.
doi: 10.1016/j.csda.2011.10.022.
|
[14]
|
E. Evangelou, Z. Zhu and R. L. Smith, Estimation and prediction for spatial generalized linear mixed models using high order laplace approximation, Journal of Statistical Planning and Inference, 141 (2011), 3564-3577.
doi: 10.1016/j.jspi.2011.05.008.
|
[15]
|
E. Evangelou and V. Maroulas, Sequential empirical Bayes method for filtering dynamic spatiotemporal processes, Spatial Statistics, 21 (2017), 114-129.
doi: 10.1016/j.spasta.2017.06.006.
|
[16]
|
E. Evangelou and Z. Zhu, Optimal predictive design augmentation for spatial generalised linear mixed models, Journal of Statistical Planning and Inference, 142 (2012), 3242-3253.
doi: 10.1016/j.jspi.2012.05.008.
|
[17]
|
A. O. Finley, H. Sang, S. Banerjee and A. E. Gelfand, Improving the performance of predictive process modeling for large datasets, Data Analysis, 53 (2009), 2873-2884.
doi: 10.1016/j.csda.2008.09.008.
|
[18]
|
R. Furrer, M. G. Genton and D. Nychka, Covariance tapering for interpolation of large spatial datasets, Journal of Computational and Graphical Statistics, 15 (2006), 502-523.
doi: 10.1198/106186006X132178.
|
[19]
|
T. Gneiting, Compactly supported correlation functions, Journal of Multivariate Analysis, 83 (2002), 493-508.
doi: 10.1006/jmva.2001.2056.
|
[20]
|
F. Hosseini, J. Eidsvik and M. Mohammadzadeh, Approximate bayesian inference in spatial glmm with skew normal latent variables, Data Analysis, 55 (2011), 1791-1806.
doi: 10.1016/j.csda.2010.11.011.
|
[21]
|
J. B. Illian, S. H. Sørbye and H. Rue, A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA), The Annals of Applied Statistics, 6 (2012), 1499-1530.
doi: 10.1214/11-AOAS530.
|
[22]
|
C. G. Kaufman, M. J. Schervish and D. W. Nychka, Covariance tapering for likelihood-based estimation in large spatial data sets, Journal of the American Statistical Association, 103 (2008), 1545-1555.
doi: 10.1198/016214508000000959.
|
[23]
|
R. Langrock, Some applications of nonlinear and non-Gaussian state–space modelling by means of hidden Markov models, Journal of Applied Statistics, 38 (2011), 2955-2970.
doi: 10.1080/02664763.2011.573543.
|
[24]
|
F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73 (2011), 423-498.
doi: 10.1111/j.1467-9868.2011.00777.x.
|
[25]
|
S. Martino, R. Akerkar and H. Rue, Approximate Bayesian inference for survival models, Scandinavian Journal of Statistics, 38 (2011), 514-528.
doi: 10.1111/j.1467-9469.2010.00715.x.
|
[26]
|
P. McCullagh and J. A. Nelder, Generalized Linear Models, Chapman & Hall/CRC, 1999.
doi: 10.1007/978-1-4899-3242-6.
|
[27]
|
W. Müller, Collecting Spatial Data: Optimum Design of Experiments for Random Fields, Springer Verlag, 2007.
|
[28]
|
M. Paul, A. Riebler, L. M. Bachmann, H. Rue and L. Held, Bayesian bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximations, Statistics in Medicine, 29 (2010), 1325-1339.
doi: 10.1002/sim.3858.
|
[29]
|
R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2018, URL https://www.R-project.org/.
|
[30]
|
P. J. Ribeiro Jr and P. J. Diggle, geoR: A package for geostatistical analysis, R News, 1 (2001), 15-18.
|
[31]
|
H. Rue and L. Held, Gaussian Markov Random Fields: Theory and Applications, Monographs on statistics and applied probability, Chapman & Hall/CRC, 2005.
doi: 10.1201/9780203492024.
|
[32]
|
H. Rue, S. Martino and N. Chopin, Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71 (2009), 319-392.
doi: 10.1111/j.1467-9868.2008.00700.x.
|
[33]
|
H. Sang and J. Z. Huang, A full scale approximation of covariance functions for large spatial data sets, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74 (2012), 111-132.
doi: 10.1111/j.1467-9868.2011.01007.x.
|
[34]
|
H. Sang, M. Jun and J. Huang, Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors, The Annals of Applied Statistics, 5 (2011), 2519-2548.
doi: 10.1214/11-AOAS478.
|
[35]
|
B. Schrödle and L. Held, A primer on disease mapping and ecological regression using INLA, Computational Statistics, 26 (2011), 241-258.
doi: 10.1007/s00180-010-0208-2.
|
[36]
|
Z. Shun and P. McCullagh, Laplace approximation of high dimensional integrals, Journal of the Royal Statistical Society, Series B, Methodological, 57 (1995), 749-760.
doi: 10.1111/j.2517-6161.1995.tb02060.x.
|
[37]
|
D. Simpson, F. Lindgren and H. Rue, In order to make spatial statistics computationally feasible, we need to forget about the covariance function, Environmetrics, 23 (2012), 65-74.
doi: 10.1002/env.1137.
|
[38]
|
M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer-Verlag Inc, 1999.
doi: 10.1007/978-1-4612-1494-6.
|
[39]
|
B. M. Taylor and P. J. Diggle, INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes, Journal of Statistical Computation and Simulation, 84 (2014), 2266-2284.
doi: 10.1080/00949655.2013.788653.
|
[40]
|
H. Zhang, On estimation and prediction for spatial generalized linear mixed models, Biometrics, 58 (2004), 129-136.
doi: 10.1111/j.0006-341X.2002.00129.x.
|