[1]
|
C. Andrieu, A. Doucet and R. Holenstein, Particle Markov chain Monte Carlo methods (with discussion), J. R. Statist. Soc. Ser. B, 72 (2010), 269-342.
doi: 10.1111/j.1467-9868.2009.00736.x.
|
[2]
|
M. Asai, M. McAleer and J. Yu, Multivariate stochastic volatility: A review, Econ. Rev., 25 (2006), 145-175.
doi: 10.1080/07474930600713564.
|
[3]
|
L. Bauwens, S. Laurent and J. V. Rombouts, Multivariate GARCH models: A survey, J. Appl. Econ., 21 (2006), 79-109.
doi: 10.1002/jae.842.
|
[4]
|
A. Beskos, D. Crisan, A. Jasra, K. Kamatani and Y. Zhou, A stable particle filter for a class of high-dimensional state-space models, Adv. Appl. Probab., 49 (2017), 24-48.
doi: 10.1017/apr.2016.77.
|
[5]
|
P. Bickel, B. Li and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions, In Pushing the Limits of Contemporary Statistics: Contributions in Honor of J. Ghosh, IMS, 3 (2008), 318–329.
doi: 10.1214/074921708000000228.
|
[6]
|
S. Chib, F. Nadari and N. Shephard, Analysis of high-dimensional multivariate stochastic volatility models, J. Econ., 134 (2006), 341-371.
doi: 10.1016/j.jeconom.2005.06.026.
|
[7]
|
N. Chopin, Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference, Ann. Statist., 32 (2004), 2385-2411.
doi: 10.1214/009053604000000698.
|
[8]
|
P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, Springer, New York, 2004.
doi: 10.1007/978-1-4684-9393-1.
|
[9]
|
P. Del Moral, A. Doucet and A. Jasra, On adaptive resampling strategies for sequential Monte Carlo methods, Bernoulli, 18 (2012), 252-278.
doi: 10.3150/10-BEJ335.
|
[10]
|
A. Doucet, On Sequential Simulation-based Methods for Bayesian Filtering, Technical Report, 1998.
|
[11]
|
A. Doucet and A. Johansen, A tutorial on particle filtering and smoothing: Fifteen years later, In Handbook of Nonlinear Filtering (eds. D. Crisan & B. Rozovsky), Oxford University Press, Oxford, (2011), 656–704.
|
[12]
|
A. Doucet, M. K. Pitt, G. Deligiannidis and R. Kohn, Efficient Implementation of Markov chain Monte Carlo when Using an Unbiased Likelihood Estimator, Biometrika, 102 (2015), 295-313.
doi: 10.1093/biomet/asu075.
|
[13]
|
J. Hull and A. White, The pricing of options on assets with stochastic volatilities, J. Finan., 42 (1987), 281-300.
doi: 10.1111/j.1540-6261.1987.tb02568.x.
|
[14]
|
T. Ishihara and Y. Omori, Efficient Bayesian estimation of a multivariate stochastic volatility with cross leverage and heavy tailed errors, Comp. Statist. Data Anal., 56 (2012), 3674-3689.
doi: 10.1016/j.csda.2010.07.015.
|
[15]
|
A. Jasra, D. A. Stephens, A. Doucet and T. Tsagaris, Inference for Lévy driven stochastic volatility models via adaptive sequential Monte Carlo, Scand. J. Statist., 38 (2011), 1-22.
doi: 10.1111/j.1467-9469.2010.00723.x.
|
[16]
|
N. Kantas, A. Doucet, S. S. Singh, J. M. Maciejowski and N. Chopin, An overview of sequential Monte Carlo methods for parameter estimation in general state-space sodels, IFAC Proc., 42 (2009), 774-785.
|
[17]
|
N. Kantas, A. Doucet, S. S. Singh, J. M. Maciejowski and N. Chopin, On particle methods for parameter estimation in general state-space models, Statist. Sci., 30 (2015), 328-351.
doi: 10.1214/14-STS511.
|
[18]
|
S. Kim, N. Shephard and S. Chib, Stochastic volatility: Likelihood inference and comparison with ARCH models, Rev. Econ. Stud., 65 (1998), 361-393.
doi: 10.1111/1467-937X.00050.
|
[19]
|
G. Kitagawa, Monte Carlo filter and smoother for non-Gaussian nonlinear state-space models, J. Comp. Graph. Stat., 5 (1996), 1-25.
doi: 10.2307/1390750.
|
[20]
|
M. Klaas, N. De Freitas and A. Doucet, Towards practical N2 Monte Carlo: The marginal particle filter, Uncert. A. I., (2005), 308–315.
|
[21]
|
A. Kong, J. S. Liu and W. H. Wong, Sequential imputations and Bayesian missing data problems, J. Amer. Statist. Assoc., 89 (1994), 278-288.
doi: 10.1080/01621459.1994.10476469.
|
[22]
|
C. Naesseth, F. Lindten and T. Schön, Nested sequential Monte Carlo methods, ICML, (2015), 1292–1301.
|
[23]
|
J. Nakajima, Bayesian analysis of multivariate stochastic volatility with skew return distribution, Econ. Rev., 36 (2017), 546-562.
doi: 10.1080/07474938.2014.977093.
|
[24]
|
S. S. Ozturk and J. F. Richard, Stochastic volatility and leverage: Application to a panel of S & P 500 stocks, Finan. Res. Lett., 12 (2015), 67-76.
|
[25]
|
M. K. Pitt, R. Dos Santos Silva, P. Giordani and R. Kohn, On some properties of Markov chain Monte Carlo simulation methods based upon the particle filter, J. Econom., 171 (2012), 134-151.
doi: 10.1016/j.jeconom.2012.06.004.
|
[26]
|
M. K. Pitt and N. Shephard, Filtering via simulation: Auxiliary particle filters, J. Amer. Statist. Assoc., 94 (1999), 590-599.
doi: 10.1080/01621459.1999.10474153.
|
[27]
|
K. Platanioti, E. McCoy and D. A. Stephens, A Review of Stochastic Volatility Models, Technical Report, 2005.
|
[28]
|
C. Snyder, T. Bengtsson, P. Bickel and J. Anderson, Obstacles to high-dimensional particle filtering, Month. Weather Rev., 136 (2008), 4629-4640.
doi: 10.1175/2008MWR2529.1.
|
[29]
|
C. Vergé, C. Duberry, P. Del Moral and E. Moulines, On parallel implementation of sequential Monte Carlo methods: The island particle filtering, Stat. Comp., 25 (2015), 243-260.
doi: 10.1007/s11222-013-9429-x.
|