
-
Previous Article
Combinatorial Hodge theory for equitable kidney paired donation
- FoDS Home
- This Issue
-
Next Article
Approximate Bayesian inference for geostatistical generalised linear models
Particle filters for inference of high-dimensional multivariate stochastic volatility models with cross-leverage effects
Department of Statistics & Applied Probability, National University of Singapore, Singapore, 117546, SG |
Multivariate stochastic volatility models are a popular and well-known class of models in the analysis of financial time series because of their abilities to capture the important stylized facts of financial returns data. We consider the problems of filtering distribution estimation and also marginal likelihood calculation for multivariate stochastic volatility models with cross-leverage effects in the high dimensional case, that is when the number of financial time series that we analyze simultaneously (denoted by $ d $) is large. The standard particle filter has been widely used in the literature to solve these intractable inference problems. It has excellent performance in low to moderate dimensions, but collapses in the high dimensional case. In this article, two new and advanced particle filters proposed in [
References:
[1] |
C. Andrieu, A. Doucet and R. Holenstein,
Particle Markov chain Monte Carlo methods (with discussion), J. R. Statist. Soc. Ser. B, 72 (2010), 269-342.
doi: 10.1111/j.1467-9868.2009.00736.x. |
[2] |
M. Asai, M. McAleer and J. Yu,
Multivariate stochastic volatility: A review, Econ. Rev., 25 (2006), 145-175.
doi: 10.1080/07474930600713564. |
[3] |
L. Bauwens, S. Laurent and J. V. Rombouts,
Multivariate GARCH models: A survey, J. Appl. Econ., 21 (2006), 79-109.
doi: 10.1002/jae.842. |
[4] |
A. Beskos, D. Crisan, A. Jasra, K. Kamatani and Y. Zhou,
A stable particle filter for a class of high-dimensional state-space models, Adv. Appl. Probab., 49 (2017), 24-48.
doi: 10.1017/apr.2016.77. |
[5] |
P. Bickel, B. Li and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions, In Pushing the Limits of Contemporary Statistics: Contributions in Honor of J. Ghosh, IMS, 3 (2008), 318–329.
doi: 10.1214/074921708000000228. |
[6] |
S. Chib, F. Nadari and N. Shephard,
Analysis of high-dimensional multivariate stochastic volatility models, J. Econ., 134 (2006), 341-371.
doi: 10.1016/j.jeconom.2005.06.026. |
[7] |
N. Chopin,
Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference, Ann. Statist., 32 (2004), 2385-2411.
doi: 10.1214/009053604000000698. |
[8] |
P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, Springer, New York, 2004.
doi: 10.1007/978-1-4684-9393-1. |
[9] |
P. Del Moral, A. Doucet and A. Jasra,
On adaptive resampling strategies for sequential Monte Carlo methods, Bernoulli, 18 (2012), 252-278.
doi: 10.3150/10-BEJ335. |
[10] |
A. Doucet, On Sequential Simulation-based Methods for Bayesian Filtering, Technical Report, 1998. Google Scholar |
[11] |
A. Doucet and A. Johansen, A tutorial on particle filtering and smoothing: Fifteen years later, In Handbook of Nonlinear Filtering (eds. D. Crisan & B. Rozovsky), Oxford University Press, Oxford, (2011), 656–704. |
[12] |
A. Doucet, M. K. Pitt, G. Deligiannidis and R. Kohn,
Efficient Implementation of Markov chain Monte Carlo when Using an Unbiased Likelihood Estimator, Biometrika, 102 (2015), 295-313.
doi: 10.1093/biomet/asu075. |
[13] |
J. Hull and A. White,
The pricing of options on assets with stochastic volatilities, J. Finan., 42 (1987), 281-300.
doi: 10.1111/j.1540-6261.1987.tb02568.x. |
[14] |
T. Ishihara and Y. Omori,
Efficient Bayesian estimation of a multivariate stochastic volatility with cross leverage and heavy tailed errors, Comp. Statist. Data Anal., 56 (2012), 3674-3689.
doi: 10.1016/j.csda.2010.07.015. |
[15] |
A. Jasra, D. A. Stephens, A. Doucet and T. Tsagaris,
Inference for Lévy driven stochastic volatility models via adaptive sequential Monte Carlo, Scand. J. Statist., 38 (2011), 1-22.
doi: 10.1111/j.1467-9469.2010.00723.x. |
[16] |
N. Kantas, A. Doucet, S. S. Singh, J. M. Maciejowski and N. Chopin, An overview of sequential Monte Carlo methods for parameter estimation in general state-space sodels, IFAC Proc., 42 (2009), 774-785. Google Scholar |
[17] |
N. Kantas, A. Doucet, S. S. Singh, J. M. Maciejowski and N. Chopin,
On particle methods for parameter estimation in general state-space models, Statist. Sci., 30 (2015), 328-351.
doi: 10.1214/14-STS511. |
[18] |
S. Kim, N. Shephard and S. Chib,
Stochastic volatility: Likelihood inference and comparison with ARCH models, Rev. Econ. Stud., 65 (1998), 361-393.
doi: 10.1111/1467-937X.00050. |
[19] |
G. Kitagawa,
Monte Carlo filter and smoother for non-Gaussian nonlinear state-space models, J. Comp. Graph. Stat., 5 (1996), 1-25.
doi: 10.2307/1390750. |
[20] |
M. Klaas, N. De Freitas and A. Doucet, Towards practical N2 Monte Carlo: The marginal particle filter, Uncert. A. I., (2005), 308–315. Google Scholar |
[21] |
A. Kong, J. S. Liu and W. H. Wong,
Sequential imputations and Bayesian missing data problems, J. Amer. Statist. Assoc., 89 (1994), 278-288.
doi: 10.1080/01621459.1994.10476469. |
[22] |
C. Naesseth, F. Lindten and T. Schön, Nested sequential Monte Carlo methods, ICML, (2015), 1292–1301. Google Scholar |
[23] |
J. Nakajima,
Bayesian analysis of multivariate stochastic volatility with skew return distribution, Econ. Rev., 36 (2017), 546-562.
doi: 10.1080/07474938.2014.977093. |
[24] |
S. S. Ozturk and J. F. Richard, Stochastic volatility and leverage: Application to a panel of S & P 500 stocks, Finan. Res. Lett., 12 (2015), 67-76. Google Scholar |
[25] |
M. K. Pitt, R. Dos Santos Silva, P. Giordani and R. Kohn,
On some properties of Markov chain Monte Carlo simulation methods based upon the particle filter, J. Econom., 171 (2012), 134-151.
doi: 10.1016/j.jeconom.2012.06.004. |
[26] |
M. K. Pitt and N. Shephard,
Filtering via simulation: Auxiliary particle filters, J. Amer. Statist. Assoc., 94 (1999), 590-599.
doi: 10.1080/01621459.1999.10474153. |
[27] |
K. Platanioti, E. McCoy and D. A. Stephens, A Review of Stochastic Volatility Models, Technical Report, 2005. Google Scholar |
[28] |
C. Snyder, T. Bengtsson, P. Bickel and J. Anderson,
Obstacles to high-dimensional particle filtering, Month. Weather Rev., 136 (2008), 4629-4640.
doi: 10.1175/2008MWR2529.1. |
[29] |
C. Vergé, C. Duberry, P. Del Moral and E. Moulines,
On parallel implementation of sequential Monte Carlo methods: The island particle filtering, Stat. Comp., 25 (2015), 243-260.
doi: 10.1007/s11222-013-9429-x. |
show all references
References:
[1] |
C. Andrieu, A. Doucet and R. Holenstein,
Particle Markov chain Monte Carlo methods (with discussion), J. R. Statist. Soc. Ser. B, 72 (2010), 269-342.
doi: 10.1111/j.1467-9868.2009.00736.x. |
[2] |
M. Asai, M. McAleer and J. Yu,
Multivariate stochastic volatility: A review, Econ. Rev., 25 (2006), 145-175.
doi: 10.1080/07474930600713564. |
[3] |
L. Bauwens, S. Laurent and J. V. Rombouts,
Multivariate GARCH models: A survey, J. Appl. Econ., 21 (2006), 79-109.
doi: 10.1002/jae.842. |
[4] |
A. Beskos, D. Crisan, A. Jasra, K. Kamatani and Y. Zhou,
A stable particle filter for a class of high-dimensional state-space models, Adv. Appl. Probab., 49 (2017), 24-48.
doi: 10.1017/apr.2016.77. |
[5] |
P. Bickel, B. Li and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions, In Pushing the Limits of Contemporary Statistics: Contributions in Honor of J. Ghosh, IMS, 3 (2008), 318–329.
doi: 10.1214/074921708000000228. |
[6] |
S. Chib, F. Nadari and N. Shephard,
Analysis of high-dimensional multivariate stochastic volatility models, J. Econ., 134 (2006), 341-371.
doi: 10.1016/j.jeconom.2005.06.026. |
[7] |
N. Chopin,
Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference, Ann. Statist., 32 (2004), 2385-2411.
doi: 10.1214/009053604000000698. |
[8] |
P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, Springer, New York, 2004.
doi: 10.1007/978-1-4684-9393-1. |
[9] |
P. Del Moral, A. Doucet and A. Jasra,
On adaptive resampling strategies for sequential Monte Carlo methods, Bernoulli, 18 (2012), 252-278.
doi: 10.3150/10-BEJ335. |
[10] |
A. Doucet, On Sequential Simulation-based Methods for Bayesian Filtering, Technical Report, 1998. Google Scholar |
[11] |
A. Doucet and A. Johansen, A tutorial on particle filtering and smoothing: Fifteen years later, In Handbook of Nonlinear Filtering (eds. D. Crisan & B. Rozovsky), Oxford University Press, Oxford, (2011), 656–704. |
[12] |
A. Doucet, M. K. Pitt, G. Deligiannidis and R. Kohn,
Efficient Implementation of Markov chain Monte Carlo when Using an Unbiased Likelihood Estimator, Biometrika, 102 (2015), 295-313.
doi: 10.1093/biomet/asu075. |
[13] |
J. Hull and A. White,
The pricing of options on assets with stochastic volatilities, J. Finan., 42 (1987), 281-300.
doi: 10.1111/j.1540-6261.1987.tb02568.x. |
[14] |
T. Ishihara and Y. Omori,
Efficient Bayesian estimation of a multivariate stochastic volatility with cross leverage and heavy tailed errors, Comp. Statist. Data Anal., 56 (2012), 3674-3689.
doi: 10.1016/j.csda.2010.07.015. |
[15] |
A. Jasra, D. A. Stephens, A. Doucet and T. Tsagaris,
Inference for Lévy driven stochastic volatility models via adaptive sequential Monte Carlo, Scand. J. Statist., 38 (2011), 1-22.
doi: 10.1111/j.1467-9469.2010.00723.x. |
[16] |
N. Kantas, A. Doucet, S. S. Singh, J. M. Maciejowski and N. Chopin, An overview of sequential Monte Carlo methods for parameter estimation in general state-space sodels, IFAC Proc., 42 (2009), 774-785. Google Scholar |
[17] |
N. Kantas, A. Doucet, S. S. Singh, J. M. Maciejowski and N. Chopin,
On particle methods for parameter estimation in general state-space models, Statist. Sci., 30 (2015), 328-351.
doi: 10.1214/14-STS511. |
[18] |
S. Kim, N. Shephard and S. Chib,
Stochastic volatility: Likelihood inference and comparison with ARCH models, Rev. Econ. Stud., 65 (1998), 361-393.
doi: 10.1111/1467-937X.00050. |
[19] |
G. Kitagawa,
Monte Carlo filter and smoother for non-Gaussian nonlinear state-space models, J. Comp. Graph. Stat., 5 (1996), 1-25.
doi: 10.2307/1390750. |
[20] |
M. Klaas, N. De Freitas and A. Doucet, Towards practical N2 Monte Carlo: The marginal particle filter, Uncert. A. I., (2005), 308–315. Google Scholar |
[21] |
A. Kong, J. S. Liu and W. H. Wong,
Sequential imputations and Bayesian missing data problems, J. Amer. Statist. Assoc., 89 (1994), 278-288.
doi: 10.1080/01621459.1994.10476469. |
[22] |
C. Naesseth, F. Lindten and T. Schön, Nested sequential Monte Carlo methods, ICML, (2015), 1292–1301. Google Scholar |
[23] |
J. Nakajima,
Bayesian analysis of multivariate stochastic volatility with skew return distribution, Econ. Rev., 36 (2017), 546-562.
doi: 10.1080/07474938.2014.977093. |
[24] |
S. S. Ozturk and J. F. Richard, Stochastic volatility and leverage: Application to a panel of S & P 500 stocks, Finan. Res. Lett., 12 (2015), 67-76. Google Scholar |
[25] |
M. K. Pitt, R. Dos Santos Silva, P. Giordani and R. Kohn,
On some properties of Markov chain Monte Carlo simulation methods based upon the particle filter, J. Econom., 171 (2012), 134-151.
doi: 10.1016/j.jeconom.2012.06.004. |
[26] |
M. K. Pitt and N. Shephard,
Filtering via simulation: Auxiliary particle filters, J. Amer. Statist. Assoc., 94 (1999), 590-599.
doi: 10.1080/01621459.1999.10474153. |
[27] |
K. Platanioti, E. McCoy and D. A. Stephens, A Review of Stochastic Volatility Models, Technical Report, 2005. Google Scholar |
[28] |
C. Snyder, T. Bengtsson, P. Bickel and J. Anderson,
Obstacles to high-dimensional particle filtering, Month. Weather Rev., 136 (2008), 4629-4640.
doi: 10.1175/2008MWR2529.1. |
[29] |
C. Vergé, C. Duberry, P. Del Moral and E. Moulines,
On parallel implementation of sequential Monte Carlo methods: The island particle filtering, Stat. Comp., 25 (2015), 243-260.
doi: 10.1007/s11222-013-9429-x. |














Standard PF | STPF | Marginal STPF | |
25 | |||
50 | |||
100 | N.A. | ||
200 | N.A. |
Standard PF | STPF | Marginal STPF | |
25 | |||
50 | |||
100 | N.A. | ||
200 | N.A. |
Standard PF | STPF | Marginal STPF | |
25 | |||
50 | |||
100 | N.A. | ||
200 | N.A. |
Standard PF | STPF | Marginal STPF | |
25 | |||
50 | |||
100 | N.A. | ||
200 | N.A. |
Standard PF | STPF | Computation Time | |
100 | |||
200 |
Standard PF | STPF | Computation Time | |
100 | |||
200 |
[1] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[2] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[3] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[4] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[5] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[6] |
Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169 |
[7] |
Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020134 |
[8] |
Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021024 |
[9] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[10] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[11] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[12] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[13] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[14] |
Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021035 |
[15] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[16] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[17] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[18] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[19] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[20] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]