[1]
|
S. M. Ali and S. D. Silvey, A general class of coefficients of divergence of one distribution from another, Journal of the Royal Statistical Society. Series B (Methodological), 28 (1966), 131-142.
doi: 10.1111/j.2517-6161.1966.tb00626.x.
|
[2]
|
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068.
|
[3]
|
M. Basseville, Divergence measures for statistical data processing–an annotated bibliography, Signal Processing, 93 (2013), 621-633.
doi: 10.1016/j.sigpro.2012.09.003.
|
[4]
|
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
doi: 10.1007/978-3-319-48311-5.
|
[5]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[6]
|
A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data, Mathematical Programming, 88 (2000), 411-424.
doi: 10.1007/PL00011380.
|
[7]
|
A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust Optimization, Princeton University Press, 2009.
|
[8]
|
A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg and G. Rennen, Robust solutions of optimization problems affected by uncertain probabilities, Management Science, 59 (2013), 341-357.
doi: 10.1287/mnsc.1120.1641.
|
[9]
|
A. P. Bradley, The use of the area under the roc curve in the evaluation of machine learning algorithms, Pattern Recognition, 30 (1997), 1145-1159.
doi: 10.1016/S0031-3203(96)00142-2.
|
[10]
|
L. M. Briceno-Arias, G. Chierchia, E. Chouzenoux and J.-C. Pesquet, A random block-coordinate douglas-rachford splitting method with low computational complexity for binary logistic regression, Computational Optimization and Applications, 72 (2019), 707-726.
doi: 10.1007/s10589-019-00060-6.
|
[11]
|
A. Chambolle and C. Dossal, On the convergence of the iterates of "FISTA", Journal of Optimization Theory and Applications, 166 (2015), 968-982.
doi: 10.1007/s10957-015-0746-4.
|
[12]
|
P. L. Combettes, Strong convergence of block-iterative outer approximation methods for convex optimization, SIAM Journal on Control and Optimization, 38 (2000), 538-565.
doi: 10.1137/S036301299732626X.
|
[13]
|
P. L. Combettes, A block-iterative surrogate constraint splitting method for quadratic signal recovery, IEEE Transactions on Signal Processing, 51 (2003), 1771-1782.
doi: 10.1109/TSP.2003.812846.
|
[14]
|
P. L. Combettes and C. L. Müller, Perspective functions: Proximal calculus and applications in high-dimensional statistics, Journal of Mathematical Analysis and Applications, 457 (2018), 1283-1306.
doi: 10.1016/j.jmaa.2016.12.021.
|
[15]
|
P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, 185–212, Springer Optim. Appl., 49, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9569-8_10.
|
[16]
|
P. L. Combettes, D. Dung and B. C. Vũ, Dualization of signal recovery problems, Set-Valued and Variational Analysis, 18 (2010), 373-404.
doi: 10.1007/s11228-010-0147-7.
|
[17]
|
I. Csiszár, Eine informationstheoretische ungleichung und ihre anwendung auf beweis der ergodizitaet von markoffschen ketten, Magyer Tud. Akad. Mat. Kutato Int. Koezl., 8 (1963), 85-108.
|
[18]
|
J. Duchi, P. Glynn and H. Namkoong, Statistics of robust optimization: A generalized empirical likelihood approach, preprint, arXiv: 1610.03425, 2016.
|
[19]
|
P. M. Esfahani and D. Kuhn, Data-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and tractable reformulations, Mathematical Programming, 171 (2018), 115-166.
doi: 10.1007/s10107-017-1172-1.
|
[20]
|
P. M. Esfahani, S. Shafieezadeh-Abadeh, G. A. Hanasusanto and D. Kuhn, Data-driven inverse optimization with imperfect information, Mathematical Programming, 167 (2018), 191-234.
doi: 10.1007/s10107-017-1216-6.
|
[21]
|
J. Feng, H. Xu, S. Mannor and S. Yan, Robust logistic regression and classification, In Advances in Neural Information Processing Systems, 2014,253–261.
|
[22]
|
H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time (4th edition), Walter de Gruyter, 2016.
|
[23]
|
J.-y. Gotoh, M. J. Kim and A. E. Lim, Robust empirical optimization is almost the same as mean–variance optimization, Operations Research Letters, 46 (2018), 448-452.
doi: 10.1016/j.orl.2018.05.005.
|
[24]
|
Y. Haugazeau, Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes, These, Universite de Paris, 1968.
|
[25]
|
Z. Hu and L. J. Hong, Kullback-leibler divergence constrained distributionally robust optimization, Available at Optimization Online, 2013.
|
[26]
|
A. Kurakin, I. Goodfellow and S. Bengio, Adversarial examples in the physical world, preprint, arXiv: 1607.02533, 2016.
|
[27]
|
S. Moghaddam and M. Mahlooji, Robust simulation optimization using $\varphi$-divergence, International Journal of Industrial Engineering Computations, 7 (2016), 517-534.
doi: 10.5267/j.ijiec.2016.5.003.
|
[28]
|
T. Morimoto, Markov processes and the h-theorem, Journal of the Physical Society of Japan, 18 (1963), 328-331.
doi: 10.1143/JPSJ.18.328.
|
[29]
|
H. Namkoong and J. C. Duchi, Stochastic gradient methods for distributionally robust optimization with f-divergences, In Advances in Neural Information Processing Systems, 2016, 2208–2216.
|
[30]
|
N. Papernot, P. McDaniel and I. Goodfellow, Transferability in machine learning: From phenomena to black-box attacks using adversarial samples, preprint, arXiv: 1605.07277, 2016.
|
[31]
|
Y. Plan and R. Vershynin, Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach, IEEE Transactions on Information Theory, 59 (2013), 482-494.
doi: 10.1109/TIT.2012.2207945.
|
[32]
|
R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-42.
doi: 10.21314/JOR.2000.038.
|
[33]
|
A. Ruszczyński and A. Shapiro, Conditional risk mappings, Mathematics of Operations Research, 31 (2006), 544-561.
doi: 10.1287/moor.1060.0204.
|
[34]
|
A. Ruszczynski and A. Shapiro, Optimization of convex risk functions, Mathematics of Operations Research, 31 (2006), 433-452.
doi: 10.1287/moor.1050.0186.
|
[35]
|
S. Shafieezadeh-Abadeh, P. M. Esfahani and D. Kuhn, Distributionally robust logistic regression, In Advances in Neural Information Processing Systems, (2015), 1576–1584.
|