-
Previous Article
Bayesian inference for latent chain graphs
- FoDS Home
- This Issue
-
Next Article
Stochastic gradient descent algorithm for stochastic optimization in solving analytic continuation problems
Semi-supervised classification on graphs using explicit diffusion dynamics
1. | Department of Mathematics and Imperial College Business School, Imperial College London, London SW7 2AZ, UK |
2. | Department of Mathematics, Imperial College London, London SW7 2AZ, UK |
Classification tasks based on feature vectors can be significantly improved by including within deep learning a graph that summarises pairwise relationships between the samples. Intuitively, the graph acts as a conduit to channel and bias the inference of class labels. Here, we study classification methods that consider the graph as the originator of an explicit graph diffusion. We show that appending graph diffusion to feature-based learning as an a posteriori refinement achieves state-of-the-art classification accuracy. This method, which we call Graph Diffusion Reclassification (GDR), uses overshooting events of a diffusive graph dynamics to reclassify individual nodes. The method uses intrinsic measures of node influence, which are distinct for each node, and allows the evaluation of the relationship and importance of features and graph for classification. We also present diff-GCN, a simple extension of Graph Convolutional Neural Network (GCN) architectures that leverages explicit diffusion dynamics, and allows the natural use of directed graphs. To showcase our methods, we use benchmark datasets of documents with associated citation data.
References:
[1] |
A. Arnaudon, R. L. Peach and M. Barahona, Graph centrality is a question of scale, arXiv e-prints, arXiv: 1907.08624. Google Scholar |
[2] |
K. A. Bacik, M. T. Schaub, M. Beguerisse-Díaz, Y. N. Billeh and M. Barahona, Flow-Based Network Analysis of the Caenorhabditis elegans Connectome, PLoS Computational Biology, 12 (2016), e1005055, http://arXiv.org/abs/1511.00673.
doi: 10.1371/journal.pcbi.1005055. |
[3] |
M. Beguerisse-Díaz, B. Vangelov and M. Barahona, Finding role communities in directed networks using Role-Based Similarity, Markov Stability and the Relaxed Minimum Spanning Tree, in 2013 IEEE Global Conference on Signal and Information Processing, 2013, 937–940, http://arXiv.org/abs/1309.1795. Google Scholar |
[4] |
M. Beguerisse-Díaz, G. Garduno-Hern{á}ndez, B. Vangelov, S. N. Yaliraki and M. Barahona, Interest communities and flow roles in directed networks: The Twitter network of the UK riots, Journal of The Royal Society Interface, 11 (2014), 20140940, https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2014.0940. Google Scholar |
[5] |
C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer, 2006.
doi: 10.1007/978-0-387-45528-0. |
[6] |
M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam and P. Vandergheynst,
Geometric deep learning: Going beyond euclidean data, IEEE Signal Processing Magazine, 34 (2017), 18-42.
doi: 10.1109/MSP.2017.2693418. |
[7] |
J. Bruna, W. Zaremba, A. Szlam and Y. Lecun, Spectral networks and locally connected networks on graphs, in International Conference on Learning Representations (ICLR2014), CBLS, April 2014, 2014, 1–14, http://arXiv.org/abs/1312.6203. Google Scholar |
[8] |
O. Chapelle and A. Zien, Semi-supervised classification by low density separation, in Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS 2005), 2005, 57–64. Google Scholar |
[9] |
J. Chen, J. Zhu and L. Song, Stochastic Training of Graph Convolutional Networks with Variance Reduction, arXiv e-prints, arXiv: 1012.2726, http://arXiv.org/abs/1710.10568. Google Scholar |
[10] |
F. Chung,
Laplacians and the Cheeger inequality for directed graphs, Annals of Combinatorics, 9 (2005), 1-19.
doi: 10.1007/s00026-005-0237-z. |
[11] |
R. R. Coifman and S. Lafon,
Diffusion maps, Applied and Computational Harmonic Analysis, 21 (2006), 5-30.
doi: 10.1016/j.acha.2006.04.006. |
[12] |
K. Cooper and M. Barahona, Role-based similarity in directed networks, arXiv e-prints, arXiv: 1012.2726, http://arXiv.org/abs/1012.2726. Google Scholar |
[13] |
M. Defferrard, X. Bresson and P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, in Advances in neural information processing systems, 2016, 3844–3852. Google Scholar |
[14] |
J.-C. Delvenne, S. N. Yaliraki and M. Barahona, Stability of graph communities across time scales., Proceedings of the National Academy of Sciences of the United States of America, 107 (2010), 12755–12760, http://arXiv.org/abs/0812.1811.
doi: 10.1073/pnas.0903215107. |
[15] |
F. Fouss, A. Pirotte, J. Renders and M. Saerens, Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation, IEEE Transactions on Knowledge and Data Engineering, 19 (2007), 355-369. Google Scholar |
[16] |
H. Gao, Z. Wang and S. Ji, Large-scale learnable graph convolutional networks, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 8, Association for Computing Machinery, New York, NY, USA, 2018, 1416–1424, http://arXiv.org/abs/1808.03965.
doi: 10.1145/3219819.3219947. |
[17] |
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT press, 2016.
![]() |
[18] |
D. K. Hammond, P. Vandergheynst and R. Gribonval,
Wavelets on graphs via spectral graph theory, Applied and Computational Harmonic Analysis, 30 (2011), 129-150.
doi: 10.1016/j.acha.2010.04.005. |
[19] |
D. P. Kingma, S. Mohamed, D. J. Rezende and M. Welling, Semi-supervised learning with deep generative models, in Advances in Neural Information Processing Systems, 2014, 3581–3589. Google Scholar |
[20] |
T. N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, arXiv: 1609.02907v4, 1–14, http://arXiv.org/abs/1609.02907. Google Scholar |
[21] |
R. Lambiotte, J.-C. Delvenne and M. Barahona, Random walks, markov processes and the multiscale modular organization of complex networks, IEEE Transactions on Network Science and Engineering, 1 (2014), 76–90, http://arXiv.org/abs/1502.04381, http://arXiv.org/abs/0812.1770.
doi: 10.1109/TNSE.2015.2391998. |
[22] |
Y. LeCun, Y. Bengio and G. Hinton,
Deep learning, Nature, 521 (2015), 436-444.
doi: 10.1038/nature14539. |
[23] |
R. Levie, F. Monti, X. Bresson and M. M. Bronstein,
CayleyNets: Graph convolutional neural networks with complex rational spectral filters, IEEE Transactions on Signal Processing, 67 (2019), 97-109.
doi: 10.1109/TSP.2018.2879624. |
[24] |
Z. Liu and M. Barahona,
Geometric multiscale community detection: Markov stability and vector partitioning, Journal of Complex Networks, 6 (2018), 157-172.
doi: 10.1093/comnet/cnx028. |
[25] |
Z. Liu and M. Barahona, Graph-based data clustering via multiscale community detection, Applied Network Science, 5 (2020), 16pp, http://arXiv.org/abs/1909.04491. Google Scholar |
[26] |
Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song and Y. Qi, GeniePath: Graph neural networks with adaptive receptive paths, AAAI Technical Track: Machine Learning, 33 (2019), http://arXiv.org/abs/1802.00910.
doi: 10.1609/aaai.v33i01.33014424. |
[27] |
N. Masuda, M. A. Porter and R. Lambiotte,
Random walks and diffusion on networks, Physics Reports, 716/717 (2017), 1-58.
doi: 10.1016/j.physrep.2017.07.007. |
[28] |
L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web, Technical Report 1999-66, Stanford InfoLab, 1999, http://ilpubs.stanford.edu:8090/422/. Google Scholar |
[29] |
B. Perozzi, R. Al-Rfou and S. Skiena, Deepwalk: Online learning of social representations, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 4, Association for Computing Machinery, New York, NY, USA, 2014, 701–710.
doi: 10.1145/2623330.2623732. |
[30] |
Y. Qian, P. Expert, T. Rieu, P. Panzarasa and M. Barahona, Quantifying the alignment of graph and features in deep learning, arXiv e-prints, arXiv: 1905.12921. Google Scholar |
[31] |
M. T. Schaub, J.-C. Delvenne, R. Lambiotte and M. Barahona, Multiscale dynamical embeddings of complex networks, Phys. Rev. E, 99 (2019), 062308.
doi: 10.1103/PhysRevE.99.062308. |
[32] |
P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher and T. Eliassi-Rad, Collective classification in network data, AI Magazine, 29 (2008), 93–106, http://www.cs.iit.edu/ ml/pdfs/sen-aimag08.pdf.
doi: 10.1609/aimag.v29i3.2157. |
[33] |
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò and Y. Bengio, Graph attention networks, Machine Learning, 3 (2018), 1–12, http://arXiv.org/abs/1710.10903. Google Scholar |
[34] |
J. Weston, F. Ratle, H. Mobahi and R. Collobert, Deep learning via semi-supervised embedding, ICML '08: Proceedings of the 25th International Conference on Machine Learning, 2008, 1168–1175.
doi: 10.1145/1390156.1390303. |
[35] |
Z. Yang, W. W. Cohen and R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, arXiv: 1603.08861v2, 48, http://arXiv.org/abs/1603.08861. Google Scholar |
[36] |
J. Zhang, X. Shi, J. Xie, H. Ma, I. King and D.-Y. Yeung, GaAN: Gated attention networks for learning on large and spatiotemporal graphs, arXiv e-prints, http://arXiv.org/abs/1803.07294. Google Scholar |
[37] |
X. Zhu, Z. Ghahramani and J. Lafferty, Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions, in Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML 3, AAAI Press, 2003, 912-919. Google Scholar |
[38] |
C. Zhuang and Q. Ma, Dual graph convolutional networks for graph-based semi-supervised classification, in Proceedings of the 2018 World Wide Web Conference, Lyon, France, 2018, 499–508.
doi: 10.1145/3178876.3186116. |
show all references
References:
[1] |
A. Arnaudon, R. L. Peach and M. Barahona, Graph centrality is a question of scale, arXiv e-prints, arXiv: 1907.08624. Google Scholar |
[2] |
K. A. Bacik, M. T. Schaub, M. Beguerisse-Díaz, Y. N. Billeh and M. Barahona, Flow-Based Network Analysis of the Caenorhabditis elegans Connectome, PLoS Computational Biology, 12 (2016), e1005055, http://arXiv.org/abs/1511.00673.
doi: 10.1371/journal.pcbi.1005055. |
[3] |
M. Beguerisse-Díaz, B. Vangelov and M. Barahona, Finding role communities in directed networks using Role-Based Similarity, Markov Stability and the Relaxed Minimum Spanning Tree, in 2013 IEEE Global Conference on Signal and Information Processing, 2013, 937–940, http://arXiv.org/abs/1309.1795. Google Scholar |
[4] |
M. Beguerisse-Díaz, G. Garduno-Hern{á}ndez, B. Vangelov, S. N. Yaliraki and M. Barahona, Interest communities and flow roles in directed networks: The Twitter network of the UK riots, Journal of The Royal Society Interface, 11 (2014), 20140940, https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2014.0940. Google Scholar |
[5] |
C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer, 2006.
doi: 10.1007/978-0-387-45528-0. |
[6] |
M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam and P. Vandergheynst,
Geometric deep learning: Going beyond euclidean data, IEEE Signal Processing Magazine, 34 (2017), 18-42.
doi: 10.1109/MSP.2017.2693418. |
[7] |
J. Bruna, W. Zaremba, A. Szlam and Y. Lecun, Spectral networks and locally connected networks on graphs, in International Conference on Learning Representations (ICLR2014), CBLS, April 2014, 2014, 1–14, http://arXiv.org/abs/1312.6203. Google Scholar |
[8] |
O. Chapelle and A. Zien, Semi-supervised classification by low density separation, in Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS 2005), 2005, 57–64. Google Scholar |
[9] |
J. Chen, J. Zhu and L. Song, Stochastic Training of Graph Convolutional Networks with Variance Reduction, arXiv e-prints, arXiv: 1012.2726, http://arXiv.org/abs/1710.10568. Google Scholar |
[10] |
F. Chung,
Laplacians and the Cheeger inequality for directed graphs, Annals of Combinatorics, 9 (2005), 1-19.
doi: 10.1007/s00026-005-0237-z. |
[11] |
R. R. Coifman and S. Lafon,
Diffusion maps, Applied and Computational Harmonic Analysis, 21 (2006), 5-30.
doi: 10.1016/j.acha.2006.04.006. |
[12] |
K. Cooper and M. Barahona, Role-based similarity in directed networks, arXiv e-prints, arXiv: 1012.2726, http://arXiv.org/abs/1012.2726. Google Scholar |
[13] |
M. Defferrard, X. Bresson and P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, in Advances in neural information processing systems, 2016, 3844–3852. Google Scholar |
[14] |
J.-C. Delvenne, S. N. Yaliraki and M. Barahona, Stability of graph communities across time scales., Proceedings of the National Academy of Sciences of the United States of America, 107 (2010), 12755–12760, http://arXiv.org/abs/0812.1811.
doi: 10.1073/pnas.0903215107. |
[15] |
F. Fouss, A. Pirotte, J. Renders and M. Saerens, Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation, IEEE Transactions on Knowledge and Data Engineering, 19 (2007), 355-369. Google Scholar |
[16] |
H. Gao, Z. Wang and S. Ji, Large-scale learnable graph convolutional networks, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 8, Association for Computing Machinery, New York, NY, USA, 2018, 1416–1424, http://arXiv.org/abs/1808.03965.
doi: 10.1145/3219819.3219947. |
[17] |
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT press, 2016.
![]() |
[18] |
D. K. Hammond, P. Vandergheynst and R. Gribonval,
Wavelets on graphs via spectral graph theory, Applied and Computational Harmonic Analysis, 30 (2011), 129-150.
doi: 10.1016/j.acha.2010.04.005. |
[19] |
D. P. Kingma, S. Mohamed, D. J. Rezende and M. Welling, Semi-supervised learning with deep generative models, in Advances in Neural Information Processing Systems, 2014, 3581–3589. Google Scholar |
[20] |
T. N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, arXiv: 1609.02907v4, 1–14, http://arXiv.org/abs/1609.02907. Google Scholar |
[21] |
R. Lambiotte, J.-C. Delvenne and M. Barahona, Random walks, markov processes and the multiscale modular organization of complex networks, IEEE Transactions on Network Science and Engineering, 1 (2014), 76–90, http://arXiv.org/abs/1502.04381, http://arXiv.org/abs/0812.1770.
doi: 10.1109/TNSE.2015.2391998. |
[22] |
Y. LeCun, Y. Bengio and G. Hinton,
Deep learning, Nature, 521 (2015), 436-444.
doi: 10.1038/nature14539. |
[23] |
R. Levie, F. Monti, X. Bresson and M. M. Bronstein,
CayleyNets: Graph convolutional neural networks with complex rational spectral filters, IEEE Transactions on Signal Processing, 67 (2019), 97-109.
doi: 10.1109/TSP.2018.2879624. |
[24] |
Z. Liu and M. Barahona,
Geometric multiscale community detection: Markov stability and vector partitioning, Journal of Complex Networks, 6 (2018), 157-172.
doi: 10.1093/comnet/cnx028. |
[25] |
Z. Liu and M. Barahona, Graph-based data clustering via multiscale community detection, Applied Network Science, 5 (2020), 16pp, http://arXiv.org/abs/1909.04491. Google Scholar |
[26] |
Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song and Y. Qi, GeniePath: Graph neural networks with adaptive receptive paths, AAAI Technical Track: Machine Learning, 33 (2019), http://arXiv.org/abs/1802.00910.
doi: 10.1609/aaai.v33i01.33014424. |
[27] |
N. Masuda, M. A. Porter and R. Lambiotte,
Random walks and diffusion on networks, Physics Reports, 716/717 (2017), 1-58.
doi: 10.1016/j.physrep.2017.07.007. |
[28] |
L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web, Technical Report 1999-66, Stanford InfoLab, 1999, http://ilpubs.stanford.edu:8090/422/. Google Scholar |
[29] |
B. Perozzi, R. Al-Rfou and S. Skiena, Deepwalk: Online learning of social representations, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 4, Association for Computing Machinery, New York, NY, USA, 2014, 701–710.
doi: 10.1145/2623330.2623732. |
[30] |
Y. Qian, P. Expert, T. Rieu, P. Panzarasa and M. Barahona, Quantifying the alignment of graph and features in deep learning, arXiv e-prints, arXiv: 1905.12921. Google Scholar |
[31] |
M. T. Schaub, J.-C. Delvenne, R. Lambiotte and M. Barahona, Multiscale dynamical embeddings of complex networks, Phys. Rev. E, 99 (2019), 062308.
doi: 10.1103/PhysRevE.99.062308. |
[32] |
P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher and T. Eliassi-Rad, Collective classification in network data, AI Magazine, 29 (2008), 93–106, http://www.cs.iit.edu/ ml/pdfs/sen-aimag08.pdf.
doi: 10.1609/aimag.v29i3.2157. |
[33] |
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò and Y. Bengio, Graph attention networks, Machine Learning, 3 (2018), 1–12, http://arXiv.org/abs/1710.10903. Google Scholar |
[34] |
J. Weston, F. Ratle, H. Mobahi and R. Collobert, Deep learning via semi-supervised embedding, ICML '08: Proceedings of the 25th International Conference on Machine Learning, 2008, 1168–1175.
doi: 10.1145/1390156.1390303. |
[35] |
Z. Yang, W. W. Cohen and R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, arXiv: 1603.08861v2, 48, http://arXiv.org/abs/1603.08861. Google Scholar |
[36] |
J. Zhang, X. Shi, J. Xie, H. Ma, I. King and D.-Y. Yeung, GaAN: Gated attention networks for learning on large and spatiotemporal graphs, arXiv e-prints, http://arXiv.org/abs/1803.07294. Google Scholar |
[37] |
X. Zhu, Z. Ghahramani and J. Lafferty, Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions, in Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML 3, AAAI Press, 2003, 912-919. Google Scholar |
[38] |
C. Zhuang and Q. Ma, Dual graph convolutional networks for graph-based semi-supervised classification, in Proceedings of the 2018 World Wide Web Conference, Lyon, France, 2018, 499–508.
doi: 10.1145/3178876.3186116. |
Datasets | Nodes | Edges | Classes | Features |
Citeseer | ||||
Cora | ||||
Pubmed | ||||
Wikipedia |
Datasets | Nodes | Edges | Classes | Features |
Citeseer | ||||
Cora | ||||
Pubmed | ||||
Wikipedia |
Method | Citeseer | Cora | Pubmed | Wikipedia |
Uniform | 7.7 | 13.0 | 18.0 | 28.7 |
GDR (Uniform) | 50.6 (+42.9) | 71.8 (+58.8) | 73.2 (+55.2) | 31.4 (+2.7) |
Projection | 61.8 | 59.0 | 72.0 | 32.5 |
RF | 60.3 | 58.9 | 68.8 | 50.8 |
SVM | 61.1 | 58.0 | 49.9 | 31.0 |
MLP | 57.0 | 56.0 | 70.7 | 43.0 |
GDR (Projection) | 70.4 (+8.7) | 79.7 (+20.7) | 75.8 (+3.8) | 36.9 (+4.4) |
GDR (RF) | 70.5 (+10.2) | 78.7 (+19.8) | 72.2 (+3.2) | 50.8 (+0.0) |
GDR (SVM) | 70.3 (+9.2) | 81.2 (+23.2) | 52.4 (+2.5) | 41.9 (+10.8) |
GDR (MLP) | 69.7(+12.7) | 78.5 (+22.5) | 75.5 (+4.8) | 40.5 (-2.5) |
Planetoid | 64.7 | 75.7 | 72.2 | - |
GCN | 70.3 | 81.1 | 79.0 | 39.2 |
GDR (GCN) | 70.8 (+0.5) | 82.2 (+1.1) | 79.4 (+0.4) | 39.5 (+0.3) |
Method | Citeseer | Cora | Pubmed | Wikipedia |
Uniform | 7.7 | 13.0 | 18.0 | 28.7 |
GDR (Uniform) | 50.6 (+42.9) | 71.8 (+58.8) | 73.2 (+55.2) | 31.4 (+2.7) |
Projection | 61.8 | 59.0 | 72.0 | 32.5 |
RF | 60.3 | 58.9 | 68.8 | 50.8 |
SVM | 61.1 | 58.0 | 49.9 | 31.0 |
MLP | 57.0 | 56.0 | 70.7 | 43.0 |
GDR (Projection) | 70.4 (+8.7) | 79.7 (+20.7) | 75.8 (+3.8) | 36.9 (+4.4) |
GDR (RF) | 70.5 (+10.2) | 78.7 (+19.8) | 72.2 (+3.2) | 50.8 (+0.0) |
GDR (SVM) | 70.3 (+9.2) | 81.2 (+23.2) | 52.4 (+2.5) | 41.9 (+10.8) |
GDR (MLP) | 69.7(+12.7) | 78.5 (+22.5) | 75.5 (+4.8) | 40.5 (-2.5) |
Planetoid | 64.7 | 75.7 | 72.2 | - |
GCN | 70.3 | 81.1 | 79.0 | 39.2 |
GDR (GCN) | 70.8 (+0.5) | 82.2 (+1.1) | 79.4 (+0.4) | 39.5 (+0.3) |
Model | Citeseer | Cora | Pubmed | Wikipedia |
GCN | 70.3 | 81.1 | 79.0 | 34.1 |
diff-GCN | 71.9 | 82.3 | 79.3 | 45.9 |
Model | Citeseer | Cora | Pubmed | Wikipedia |
GCN | 70.3 | 81.1 | 79.0 | 34.1 |
diff-GCN | 71.9 | 82.3 | 79.3 | 45.9 |
Undirected | Directed (fw) | Directed (bw) | |
Method | |||
GDR (Projection) | 79.7 | 62.1 | 64.6 |
GDR (RF) | 78.7 | 58.0 | 57.6 |
GDR (SVM) | 81.2 | 63.6 | 62.1 |
GDR (MLP) | 78.5 | 57.3 | 56.4 |
Undirected | Directed (fw) | Directed (bw) | |
Method | |||
GDR (Projection) | 79.7 | 62.1 | 64.6 |
GDR (RF) | 78.7 | 58.0 | 57.6 |
GDR (SVM) | 81.2 | 63.6 | 62.1 |
GDR (MLP) | 78.5 | 57.3 | 56.4 |
Undirected | Directed (fw) | Directed (bw) | Augmented (fw, bw) | |
Method | ||||
GCN | 81.1 | 67.4 | 79.8 | 79.9 |
diff-GCN | 82.3 | 80.3 | 81.7 | 83.0 |
Undirected | Directed (fw) | Directed (bw) | Augmented (fw, bw) | |
Method | ||||
GCN | 81.1 | 67.4 | 79.8 | 79.9 |
diff-GCN | 82.3 | 80.3 | 81.7 | 83.0 |
[1] |
Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021039 |
[2] |
Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021003 |
[3] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[4] |
Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006 |
[5] |
Ana Rita Nogueira, João Gama, Carlos Abreu Ferreira. Causal discovery in machine learning: Theories and applications. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021008 |
[6] |
Shan-Shan Lin. Due-window assignment scheduling with learning and deterioration effects. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021081 |
[7] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[8] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022 |
[9] |
Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021044 |
[10] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[11] |
Yusra Bibi Ruhomally, Muhammad Zaid Dauhoo, Laurent Dumas. A graph cellular automaton with relation-based neighbourhood describing the impact of peer influence on the consumption of marijuana among college-aged youths. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021011 |
[12] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[13] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[14] |
Xiaochun Gu, Fang Han, Zhijie Wang, Kaleem Kashif, Wenlian Lu. Enhancement of gamma oscillations in E/I neural networks by increase of difference between external inputs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021035 |
[15] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[16] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
[17] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[18] |
Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271 |
[19] |
Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37 |
[20] |
Gheorghe Craciun, Jiaxin Jin, Polly Y. Yu. Single-target networks. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021065 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]