[1]
|
A. Arnaudon, R. L. Peach and M. Barahona, Graph centrality is a question of scale, arXiv e-prints, arXiv: 1907.08624.
|
[2]
|
K. A. Bacik, M. T. Schaub, M. Beguerisse-Díaz, Y. N. Billeh and M. Barahona, Flow-Based Network Analysis of the Caenorhabditis elegans Connectome, PLoS Computational Biology, 12 (2016), e1005055, http://arXiv.org/abs/1511.00673.
doi: 10.1371/journal.pcbi.1005055.
|
[3]
|
M. Beguerisse-Díaz, B. Vangelov and M. Barahona, Finding role communities in directed networks using Role-Based Similarity, Markov Stability and the Relaxed Minimum Spanning Tree, in 2013 IEEE Global Conference on Signal and Information Processing, 2013, 937–940, http://arXiv.org/abs/1309.1795.
|
[4]
|
M. Beguerisse-Díaz, G. Garduno-Hern{á}ndez, B. Vangelov, S. N. Yaliraki and M. Barahona, Interest communities and flow roles in directed networks: The Twitter network of the UK riots, Journal of The Royal Society Interface, 11 (2014), 20140940, https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2014.0940.
|
[5]
|
C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer, 2006.
doi: 10.1007/978-0-387-45528-0.
|
[6]
|
M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam and P. Vandergheynst, Geometric deep learning: Going beyond euclidean data, IEEE Signal Processing Magazine, 34 (2017), 18-42.
doi: 10.1109/MSP.2017.2693418.
|
[7]
|
J. Bruna, W. Zaremba, A. Szlam and Y. Lecun, Spectral networks and locally connected networks on graphs, in International Conference on Learning Representations (ICLR2014), CBLS, April 2014, 2014, 1–14, http://arXiv.org/abs/1312.6203.
|
[8]
|
O. Chapelle and A. Zien, Semi-supervised classification by low density separation, in Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS 2005), 2005, 57–64.
|
[9]
|
J. Chen, J. Zhu and L. Song, Stochastic Training of Graph Convolutional Networks with Variance Reduction, arXiv e-prints, arXiv: 1012.2726, http://arXiv.org/abs/1710.10568.
|
[10]
|
F. Chung, Laplacians and the Cheeger inequality for directed graphs, Annals of Combinatorics, 9 (2005), 1-19.
doi: 10.1007/s00026-005-0237-z.
|
[11]
|
R. R. Coifman and S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis, 21 (2006), 5-30.
doi: 10.1016/j.acha.2006.04.006.
|
[12]
|
K. Cooper and M. Barahona, Role-based similarity in directed networks, arXiv e-prints, arXiv: 1012.2726, http://arXiv.org/abs/1012.2726.
|
[13]
|
M. Defferrard, X. Bresson and P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, in Advances in neural information processing systems, 2016, 3844–3852.
|
[14]
|
J.-C. Delvenne, S. N. Yaliraki and M. Barahona, Stability of graph communities across time scales., Proceedings of the National Academy of Sciences of the United States of America, 107 (2010), 12755–12760, http://arXiv.org/abs/0812.1811.
doi: 10.1073/pnas.0903215107.
|
[15]
|
F. Fouss, A. Pirotte, J. Renders and M. Saerens, Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation, IEEE Transactions on Knowledge and Data Engineering, 19 (2007), 355-369.
|
[16]
|
H. Gao, Z. Wang and S. Ji, Large-scale learnable graph convolutional networks, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 8, Association for Computing Machinery, New York, NY, USA, 2018, 1416–1424, http://arXiv.org/abs/1808.03965.
doi: 10.1145/3219819.3219947.
|
[17]
|
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT press, 2016.
|
[18]
|
D. K. Hammond, P. Vandergheynst and R. Gribonval, Wavelets on graphs via spectral graph theory, Applied and Computational Harmonic Analysis, 30 (2011), 129-150.
doi: 10.1016/j.acha.2010.04.005.
|
[19]
|
D. P. Kingma, S. Mohamed, D. J. Rezende and M. Welling, Semi-supervised learning with deep generative models, in Advances in Neural Information Processing Systems, 2014, 3581–3589.
|
[20]
|
T. N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, arXiv: 1609.02907v4, 1–14, http://arXiv.org/abs/1609.02907.
|
[21]
|
R. Lambiotte, J.-C. Delvenne and M. Barahona, Random walks, markov processes and the multiscale modular organization of complex networks, IEEE Transactions on Network Science and Engineering, 1 (2014), 76–90, http://arXiv.org/abs/1502.04381, http://arXiv.org/abs/0812.1770.
doi: 10.1109/TNSE.2015.2391998.
|
[22]
|
Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, 521 (2015), 436-444.
doi: 10.1038/nature14539.
|
[23]
|
R. Levie, F. Monti, X. Bresson and M. M. Bronstein, CayleyNets: Graph convolutional neural networks with complex rational spectral filters, IEEE Transactions on Signal Processing, 67 (2019), 97-109.
doi: 10.1109/TSP.2018.2879624.
|
[24]
|
Z. Liu and M. Barahona, Geometric multiscale community detection: Markov stability and vector partitioning, Journal of Complex Networks, 6 (2018), 157-172.
doi: 10.1093/comnet/cnx028.
|
[25]
|
Z. Liu and M. Barahona, Graph-based data clustering via multiscale community detection, Applied Network Science, 5 (2020), 16pp, http://arXiv.org/abs/1909.04491.
|
[26]
|
Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song and Y. Qi, GeniePath: Graph neural networks with adaptive receptive paths, AAAI Technical Track: Machine Learning, 33 (2019), http://arXiv.org/abs/1802.00910.
doi: 10.1609/aaai.v33i01.33014424.
|
[27]
|
N. Masuda, M. A. Porter and R. Lambiotte, Random walks and diffusion on networks, Physics Reports, 716/717 (2017), 1-58.
doi: 10.1016/j.physrep.2017.07.007.
|
[28]
|
L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web, Technical Report 1999-66, Stanford InfoLab, 1999, http://ilpubs.stanford.edu:8090/422/.
|
[29]
|
B. Perozzi, R. Al-Rfou and S. Skiena, Deepwalk: Online learning of social representations, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 4, Association for Computing Machinery, New York, NY, USA, 2014, 701–710.
doi: 10.1145/2623330.2623732.
|
[30]
|
Y. Qian, P. Expert, T. Rieu, P. Panzarasa and M. Barahona, Quantifying the alignment of graph and features in deep learning, arXiv e-prints, arXiv: 1905.12921.
|
[31]
|
M. T. Schaub, J.-C. Delvenne, R. Lambiotte and M. Barahona, Multiscale dynamical embeddings of complex networks, Phys. Rev. E, 99 (2019), 062308.
doi: 10.1103/PhysRevE.99.062308.
|
[32]
|
P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher and T. Eliassi-Rad, Collective classification in network data, AI Magazine, 29 (2008), 93–106, http://www.cs.iit.edu/ ml/pdfs/sen-aimag08.pdf.
doi: 10.1609/aimag.v29i3.2157.
|
[33]
|
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò and Y. Bengio, Graph attention networks, Machine Learning, 3 (2018), 1–12, http://arXiv.org/abs/1710.10903.
|
[34]
|
J. Weston, F. Ratle, H. Mobahi and R. Collobert, Deep learning via semi-supervised embedding, ICML '08: Proceedings of the 25th International Conference on Machine Learning, 2008, 1168–1175.
doi: 10.1145/1390156.1390303.
|
[35]
|
Z. Yang, W. W. Cohen and R. Salakhutdinov, Revisiting semi-supervised learning with graph embeddings, arXiv: 1603.08861v2, 48, http://arXiv.org/abs/1603.08861.
|
[36]
|
J. Zhang, X. Shi, J. Xie, H. Ma, I. King and D.-Y. Yeung, GaAN: Gated attention networks for learning on large and spatiotemporal graphs, arXiv e-prints, http://arXiv.org/abs/1803.07294.
|
[37]
|
X. Zhu, Z. Ghahramani and J. Lafferty, Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions, in Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML 3, AAAI Press, 2003, 912-919.
|
[38]
|
C. Zhuang and Q. Ma, Dual graph convolutional networks for graph-based semi-supervised classification, in Proceedings of the 2018 World Wide Web Conference, Lyon, France, 2018, 499–508.
doi: 10.1145/3178876.3186116.
|