[1]
|
K. Q. Abdool, K. S. S. Abdool and J. A. Frohlich, Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women, Science, 329 (2010), 1168-1174.
doi: 10.1126/science.1193748.
|
[2]
|
S. A. Andersson, D. Madigan and M. D. Perlman, Alternative Markov properties for chain graphs, Scand. J. Statist., 28 (2001), 33-85.
doi: 10.1111/1467-9469.00224.
|
[3]
|
P. A. Anton, R. D. Cranston, A. Kashuba, C. W. Hendrix, N. N. Bumpus, N. R. Harman, J. Elliott, L. Janocko, E. Khanukhova, R. Dennis, W. G. Cumberland, C. Ju, A. C. Dieguez, C. Mauck and I. McGowan, RMP-02/MTN-006: A phase rectal safety, acceptability, pharmacokinetic, and pharmacodynamic study of tenofovir 1% gel compared with oral tenofovir disoproxil fumarate, AIDS Res Hum Retroviruses, 28 (2012), 1412-1421.
doi: 10.1089/aid.2012.0262.
|
[4]
|
J. M. Baeten, D. Donnell and P. Ndase, et al., Antiretroviral prophylaxis for HIV prevention in heterosexual men and women, N Engl J Med, 367 (2012), 399-410.
doi: 10.1056/NEJMoa1108524.
|
[5]
|
A. Beskos, A. Jasra, N. Kantas and A. Thiery, On the convergence of adaptive sequential Monte Carlo, Ann. Appl. Probab., 26 (2016), 1111-1146.
doi: 10.1214/15-AAP1113.
|
[6]
|
B. C. Boerebach, K. M. Lombarts, C. Keijzer, M. J. Heineman and O. A. Arah, The teacher, the physician and the person: How faculty's teaching performance influences their role modeling, PLoS One, 7 (2012), e32089.
doi: 10.1371/journal.pone.0032089.
|
[7]
|
K. Bollen, Structural Equation Models with Latent Variables, Wiley: New York, 1989.
doi: 10.1002/9781118619179.
|
[8]
|
C. M. Carvalho and M. West, Dynamic matrix-variate graphical modelso, Bayesian Anal., 2 (2007), 69-97.
doi: 10.1214/07-BA204.
|
[9]
|
H. Chun, X. Zhang and H. Zhao, Gene regulation network inference with joint sparse Gaussian graphical models, J. Comp. Graph. Statist., 24 (2015), 954-974.
doi: 10.1080/10618600.2014.956876.
|
[10]
|
P. Del Moral, A. Doucet and A. Jasra, Sequential Monte Carlo samplers, J. Roy. Statist. Soc. Ser. B, 68 (2006), 411-436.
doi: 10.1111/j.1467-9868.2006.00553.x.
|
[11]
|
A. Dobra, C. Hans, B. Jones, J. R. Nevins, G. Yao and M. West, Sparse graphical models for exploring gene expression data, J. Mult. Anal., 90 (2004), 196-212.
doi: 10.1016/j.jmva.2004.02.009.
|
[12]
|
M. Drton and M. Eichler, Maximum Likelihood Estimation in Gaussian Chain Graph Models under the Alternative Markov Property, Scand. J. Statist., 33 (2006), 247-257.
doi: 10.1111/j.1467-9469.2006.00482.x.
|
[13]
|
M. Drton and M. D. Perlman, A SINful approach to Gaussian graphical model selection, Journal of Statistical Planning and Inference, 138 (2008), 1179-1200.
doi: 10.1016/j.jspi.2007.05.035.
|
[14]
|
M. J. Druzdel and C. Glymour, Causal inferences from databases: Why universities lose students, in Computation, Causation, and Discovery (eds C. Glymour and G. F. Cooper), AAAI Press, Menlo Park, CA., (1999), 521–539.
|
[15]
|
A. Jasra, D. A. Stephens, A. Doucet and T. Tsagaris, Inference for Lévy driven stochastic volatility models via adaptive sequential Monte Carlo, Scand. J. Statist., 38 (2011), 1-22.
doi: 10.1111/j.1467-9469.2010.00723.x.
|
[16]
|
G. Kanayama, H. G. Pope and J. I. Hudson, Associations of anabolic-androgenic steroid use with other behavioral disorders: an analysis using directed acyclic graphs, Psychol Med, 48 (2018), 2601-2608.
doi: 10.1017/S0033291718000508.
|
[17]
|
S. L. Lauritzen and T. S. Richardson, Chain graph models and their causal interpretations, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64 (2002), 321-348.
doi: 10.1111/1467-9868.00340.
|
[18]
|
S. L. Lauritzen and D. J. Spiegelhalter, Local computations with probabilities on graphical structures and their applications to expert systems (with discussion), J. R. Statist. Soc. B, 50 (1988), 157-224.
doi: 10.1111/j.2517-6161.1988.tb01721.x.
|
[19]
|
S. L. Lauritzen and N. Wermuth, Mixed Interaction Models, Institut for Elektroniske Systemer, Aalborg Universitetscenter, 1984.
|
[20]
|
S. L. Lauritzen and N. Wermuth, Graphical models for association between variables, some of which are qualitative and some quantitative, Ann. Statist, 17 (1989), 31-57.
doi: 10.1214/aos/1176347003.
|
[21]
|
A. Lenkoski and A. Dobra, Computational aspects related to inference in Gaussian graphical models with the G-Wishart prior, Journal of Computational and Graphical Statistics, 20 (2011), 140-157.
doi: 10.1198/jcgs.2010.08181.
|
[22]
|
M. Levitz, M. D. Perlman and D. Madigan, Separation and completeness properties for AMP chain graph Markov models, Annals of statistics, 29 (2001), 1751-1784.
doi: 10.1214/aos/1015345961.
|
[23]
|
C. McCarter and S. Kim, On sparse Gaussian chain graph models, Advances in Neural Information Processing Systems (NIPS), 2 (2014), 3212-3220.
|
[24]
|
J. Pearl, A constraint propagation approach to probabilistic reasoning, in Uncertainty in Artificial Intelligence (eds. L. M. Kanal and J. Lemmer), North-Holland, Amsterdam, (1986), 357–370.
|
[25]
|
J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, The Morgan Kaufmann Series in Representation and Reasoning. Morgan Kaufmann, San Mateo, CA, 1988.
|
[26]
|
J. M. Pena, Learning marginal AMP chain graphs under faithfulness, in European Workshop on Probabilistic Graphical Models (eds. Linda C. van der Gaag and Ad J. Feelders), Springer, (2014), 382–395.
|
[27]
|
N. Richardson-Harman, C. W. Hendrix, N. N. Bumpus, C. Mauck, R. D. Cranston, K. Yang, J. Elliott, K. Tanner and I. McGowan, Correlation between compartmental tenofovir concentrations and an ex vivo rectal biopsy model of tissue infectibility in the RMP-02/MTN-006 phase 1 study, PLoS One, 9 (2014), e111507.
doi: 10.1371/journal.pone.0111507.
|
[28]
|
R. Silva, A MCMC approach for learning the structure of gaussian acyclic directed mixed graphs, in Statistical Models for Data Analysis (eds. P. Giudici, S. Ingrassia and M. Vichi), Springer: New York, (2013), 343–351.
doi: 10.1007/978-3-319-00032-9_39.
|
[29]
|
R. Silva and Z. Ghahramani, The Hidden Life of Latent Variables: Bayesian learning with mixed graph models, J. Mach. Learn. Res., 10 (2009), 1187-1238.
|
[30]
|
D. Sonntag and J. M. Pena, On expressiveness of the chain graph interpretations, International Journal of Approximate Reasoning, 68 (2016), 91-107.
doi: 10.1016/j.ijar.2015.07.009.
|
[31]
|
L. Tan, A. Jasra, M. De Iorio and T. Ebbels, Bayesian Inference for multiple Gaussian graphical models, Ann. Appl. Stat., 11 (2017), 2222-2251.
doi: 10.1214/17-AOAS1076.
|
[32]
|
H. Wang, Scaling It Up: Stochastic search structure learning in graphical models, Bayes. Anal, 10 (2015), 351-377.
doi: 10.1214/14-BA916.
|
[33]
|
H. Wang, C. Reesony and C. M. Carvalho, Dynamic financial index models: Modeling conditional dependencies via graphs, Bayesian Anal., 6 (2011), 639-663.
doi: 10.1214/11-BA624.
|
[34]
|
N. Wermuth, Linear recursive equations, covariance selection and path analysis, J. Am. Statist. Assoc, 75 (1980), 963-972.
doi: 10.1080/01621459.1980.10477580.
|
[35]
|
N. Wermuth and and S. L. Lauritzen, On substantive research hypotheses, conditional independence graphs and graphical chain models (with discussion), J. Roy. Statist. Soc. Ser. B, 52 (1990), 21-72.
doi: 10.1111/j.2517-6161.1990.tb01771.x.
|
[36]
|
K. H. Yang, H. Hendrix, N. Bumpus and J. Elliott, et. al, A multi-compartment single and multiple dose pharmacokinetic comparison of rectally applied tenofovir 1% gel and oral tenofovir disoproxil fumarate, PLOS One, 9 (2014), e106196.
doi: 10.1371/journal.pone.0106196.
|
[37]
|
Y. Zhou, A. M. Johansen and J. A. Aston, Towards Automatic Model Comparison: An Adaptive Sequence Monte Carlo Approach, J. Comp. Graph. Statist., 25 (2016), 701-726.
doi: 10.1080/10618600.2015.1060885.
|