
-
Previous Article
Corrigendum to "Cluster, classify, regress: A general method for learning discontinuous functions [
1 ]" - FoDS Home
- This Issue
-
Next Article
Bayesian inference for latent chain graphs
Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization
1. | CEREA, joint laboratory École des Ponts ParisTech and EDF R & D, Université Paris-Est, Champs-sur-Marne, France |
2. | Nansen Environmental and Remote Sensing Center, Bergen, Norway, and Sorbonne University, CNRS-IRD-MNHN, LOCEAN, Paris, France |
3. | Departement of Meteorology, University of Reading and NCEO, United-Kingdom, and Mathematical Institute, Utrecht University, The Netherlands |
4. | Nansen Environmental and Remote Sensing Center, Bergen, Norway |
The reconstruction from observations of high-dimensional chaotic dynamics such as geophysical flows is hampered by (ⅰ) the partial and noisy observations that can realistically be obtained, (ⅱ) the need to learn from long time series of data, and (ⅲ) the unstable nature of the dynamics. To achieve such inference from the observations over long time series, it has been suggested to combine data assimilation and machine learning in several ways. We show how to unify these approaches from a Bayesian perspective using expectation-maximization and coordinate descents. In doing so, the model, the state trajectory and model error statistics are estimated all together. Implementations and approximations of these methods are discussed. Finally, we numerically and successfully test the approach on two relevant low-order chaotic models with distinct identifiability.
References:
[1] |
H. D. I. Abarbanel, P. J. Rozdeba and S. Shirman,
Machine learning: Deepest learning as statistical data assimilation problems, Neural Computation, 30 (2018), 2025-2055.
doi: 10.1162/neco_a_01094. |
[2] |
M. Asch, M. Bocquet and M. Nodet, Data Assimilation: Methods, Algorithms, and Applications, Fundamentals of Algorithms, SIAM, Philadelphia, 2016.
doi: 10.1137/1.9781611974546.pt1. |
[3] |
C. M. Bishop (ed.), Pattern Recognition and Machine Learning, Springer-Verlag New-York Inc, 2006. |
[4] |
C. H. Bishop, B. J. Etherton and S. J. Majumdar,
Adaptive sampling with the ensemble transform Kalman filter. Part Ⅰ: Theoretical aspects, Mon. Wea. Rev., 129 (2001), 420-436.
doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2. |
[5] |
M. Bocquet,
Ensemble Kalman filtering without the intrinsic need for inflation, Nonlin. Processes Geophys., 18 (2011), 735-750.
doi: 10.5194/npg-18-735-2011. |
[6] |
M. Bocquet, J. Brajard, A. Carrassi and L. Bertino,
Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models, Nonlin. Processes Geophys., 26 (2019), 143-162.
doi: 10.5194/npg-26-143-2019. |
[7] |
M. Bocquet and P. Sakov,
Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20 (2013), 803-818.
doi: 10.5194/npg-20-803-2013. |
[8] |
J. Brajard, A. Carrassi, M. Bocquet and L. Bertino, Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model, J. Comput. Sci., 2020, http://arXiv.org/pdf/2001.01520.pdf.
doi: 10.5194/gmd-2019-136. |
[9] |
S. L. Brunton, J. L. Proctor and J. N. Kutz,
Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, 113 (2016), 3932-3937.
doi: 10.1073/pnas.1517384113. |
[10] |
R. H. Byrd, P. Lu and J. Nocedal,
A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientific and Statistical Computing, 16 (1995), 1190-1208.
doi: 10.1137/0916069. |
[11] |
M. Carlu, F. Ginelli, V. Lucarini and A. Politi,
Lyapunov analysis of multiscale dynamics: The slow bundle of the two-scale Lorenz 96 model, Nonlin. Processes Geophys., 26 (2019), 73-89.
doi: 10.5194/npg-26-73-2019. |
[12] |
A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Data assimilation in the geosciences: An overview on methods, issues, and perspectives, WIREs Climate Change, 9 (2018), e535.
doi: 10.1002/wcc.535. |
[13] |
B. Chang, L. Meng, E. Haber, F. Tung and D. Begert, Multi-level residual networks from dynamical systems view, in Proceedings of ICLR 2018, 2018. Google Scholar |
[14] |
F. Chollet, Deep Learning with Python, Manning Publications Company, 2017. Google Scholar |
[15] |
A. P. Dempster, N. M. Laird and D. B. Rubin,
Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B, 39 (1977), 1-38.
|
[16] |
P. D. Dueben and P. Bauer,
Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model Dev., 11 (2018), 3999-4009.
doi: 10.5194/gmd-11-3999-2018. |
[17] |
W. E,
A proposal on machine learning via dynamical systems, Commun. Math. Stat., 5 (2017), 1-11.
doi: 10.1007/s40304-017-0103-z. |
[18] |
G. Evensen, Data Assimilation: The Ensemble Kalman Filter, 2nd edition, Springer-Verlag Berlin Heildelberg, 2009.
doi: 10.1007/978-3-642-03711-5. |
[19] |
R. Fablet, S. Ouala and C. Herzet, Bilinear residual neural network for the identification and forecasting of dynamical systems, in EUSIPCO 2018, European Signal Processing Conference, Rome, Italy, 2018, 1–5. Google Scholar |
[20] |
M. Fisher and S. Gürol,
Parallelization in the time dimension of four-dimensional variational data assimilation, Q. J. R. Meteorol. Soc., 143 (2017), 1136-1147.
doi: 10.1002/qj.2997. |
[21] |
Z. Ghahramani and S. T. Roweis, Learning nonlinear dynamical systems using an EM algorithm, in Advances in neural information processing systems, 1999,431–437. Google Scholar |
[22] |
W. W. Hsieh and B. Tang,
Applying neural network models to prediction and data analysis in meteorology and oceanography, Bull. Amer. Meteor. Soc., 79 (1998), 1855-1870.
doi: 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2. |
[23] |
B. R. Hunt, E. J. Kostelich and I. Szunyogh,
Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D, 230 (2007), 112-126.
doi: 10.1016/j.physd.2006.11.008. |
[24] |
E. Kalnay, H. Li, T. Miyoshi, S.-C. Yang and J. Ballabrera-Poy, 4-D-Varor ensemble Kalman filter?, Tellus A, 59 (2007), 758-773. Google Scholar |
[25] |
Y. A. LeCun, L. Bottou, G. B. Orr and K.-R. Müller, Efficient backprop, in Neural networks: Tricks of the trade, Springer, 2012, 9–48. Google Scholar |
[26] |
R. Lguensat, P. Tandeo, P. Ailliot, M. Pulido and R. Fablet,
The analog data assimilation, Mon. Wea. Rev., 145 (2017), 4093-4107.
doi: 10.1175/MWR-D-16-0441.1. |
[27] |
Y. Liu, J.-M. Haussaire, M. Bocquet, Y. Roustan, O. Saunier and A. Mathieu,
Uncertainty quantification of pollutant source retrieval: comparison of Bayesian methods with application to the Chernobyl and Fukushima-Daiichi accidental releases of radionuclides, Q. J. R. Meteorol. Soc., 143 (2017), 2886-2901.
doi: 10.1002/qj.3138. |
[28] |
Z. Long, Y. Lu, X. Ma and B. Dong, PDE-Net: Learning PDEs from Data, , in Proceedings of the 35th International Conference on Machine Learning, 2018. Google Scholar |
[29] |
E. N. Lorenz,
Designing chaotic models, J. Atmos. Sci., 62 (2005), 1574-1587.
doi: 10.1175/JAS3430.1. |
[30] |
E. N. Lorenz and K. A. Emanuel,
Optimal sites for supplementary weather observations: Simulation with a small model, J. Atmos. Sci., 55 (1998), 399-414.
doi: 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2. |
[31] |
L. Magnusson and E. Källén,
Factors influencing skill improvements in the ecmwf forecasting system, Mon. Wea. Rev., 141 (2013), 3142-3153.
doi: 10.1175/MWR-D-12-00318.1. |
[32] |
V. D. Nguyen, S. Ouala, L. Drumetz and R. Fablet, EM-like learning chaotic dynamics from noisy and partial observations, arXiv preprint, arXiv: 1903.10335. Google Scholar |
[33] |
J. Paduart, L. Lauwers, J. Swevers, K. Smolders, J. Schoukens and R. Pintelon,
Identification of nonlinear systems using polynomial nonlinear state space models, Automatica, 46 (2010), 647-656.
doi: 10.1016/j.automatica.2010.01.001. |
[34] |
D. C. Park and Y. Zhu, Bilinear recurrent neural network, in IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on, 3 (1994), 1459–1464.
doi: 10.1109/ICNN.1994.374501. |
[35] |
J. Pathak, B. Hunt, M. Girvan, Z. Lu and E. Ott, Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach, Phys. Rev. Lett., 120 (2018), 024102.
doi: 10.1103/PhysRevLett.120.024102. |
[36] |
J. Pathak, Z. Lu, B. R. Hunt, M. Girvan and E. Ott, Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data, Chaos, 27 (2017), 121102, 9pp.
doi: 10.1063/1.5010300. |
[37] |
M. Pulido, P. Tandeo, M. Bocquet, A. Carrassi and M. Lucini,
Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods, Tellus A, 70 (2018), 1-17.
doi: 10.1080/16000870.2018.1442099. |
[38] |
P. N. Raanes, A. Carrassi and L. Bertino,
Extending the square root method to account for additive forecast noise in ensemble methods, Mon. Wea. Rev., 143 (2015), 3857-3873.
doi: 10.1175/MWR-D-14-00375.1. |
[39] |
V. Rao and A. Sandu,
A time-parallel approach to strong-constraint four-dimensional variational data assimilation, J. Comp. Phys., 313 (2016), 583-593.
doi: 10.1016/j.jcp.2016.02.040. |
[40] |
M. Reichstein, G. Camps-Valls, B. Stevens, J. Denzler, N. Carvalhais and Pr abhat,
Deep learning and process understanding for data-driven Earth system science, Nature, 566 (2019), 195-204.
doi: 10.1038/s41586-019-0912-1. |
[41] |
P. Sakov, J.-M. Haussaire and M. Bocquet,
An iterative ensemble Kalman filter in presence of additive model error, Q. J. R. Meteorol. Soc., 144 (2018), 1297-1309.
doi: 10.1002/qj.3213. |
[42] |
P. Tandeo, P. Ailliot, M. Bocquet, A. Carrassi, T. Miyoshi, M. Pulido and Y. Zhen, A review of innovation based approaches to jointly estimate model and observation error covariance matrices in ensemble data assimilation, 2020, https://arXiv.org/abs/1807.11221, Submitted. Google Scholar |
[43] |
Y. Trémolet, Accounting for an imperfect model in 4D-Var, Q. J. R. Meteorol. Soc., 132 (2006), 2483-2504. Google Scholar |
[44] |
P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott and P. Koumoutsakos, Forecasting of spatio-temporal chaotic dynamics with recurrent neural networks: a comparative study of reservoir computing and backpropagation algorithms, arXiv preprint, arXiv: 1910.05266., Google Scholar |
[45] |
Y.-J. Wang and C.-T. Lin, Runge-Kutta neural network for identification of dynamical systems in high accuracy, IEEE Transactions on Neural Networks, 9 (1998), 294-307. Google Scholar |
[46] |
G. C. G. Wei and M. A. Tanner,
A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms, Journal of the American Statistical Association, 85 (1990), 699-704.
doi: 10.1080/01621459.1990.10474930. |
[47] |
P. Welch,
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Transactions on Audio and Electroacoustics, 15 (1967), 70-73.
doi: 10.1109/TAU.1967.1161901. |
[48] |
S. J. Wright,
Coordinate descent algorithms, Mathematical Programming, 151 (2015), 3-34.
doi: 10.1007/s10107-015-0892-3. |
show all references
References:
[1] |
H. D. I. Abarbanel, P. J. Rozdeba and S. Shirman,
Machine learning: Deepest learning as statistical data assimilation problems, Neural Computation, 30 (2018), 2025-2055.
doi: 10.1162/neco_a_01094. |
[2] |
M. Asch, M. Bocquet and M. Nodet, Data Assimilation: Methods, Algorithms, and Applications, Fundamentals of Algorithms, SIAM, Philadelphia, 2016.
doi: 10.1137/1.9781611974546.pt1. |
[3] |
C. M. Bishop (ed.), Pattern Recognition and Machine Learning, Springer-Verlag New-York Inc, 2006. |
[4] |
C. H. Bishop, B. J. Etherton and S. J. Majumdar,
Adaptive sampling with the ensemble transform Kalman filter. Part Ⅰ: Theoretical aspects, Mon. Wea. Rev., 129 (2001), 420-436.
doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2. |
[5] |
M. Bocquet,
Ensemble Kalman filtering without the intrinsic need for inflation, Nonlin. Processes Geophys., 18 (2011), 735-750.
doi: 10.5194/npg-18-735-2011. |
[6] |
M. Bocquet, J. Brajard, A. Carrassi and L. Bertino,
Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models, Nonlin. Processes Geophys., 26 (2019), 143-162.
doi: 10.5194/npg-26-143-2019. |
[7] |
M. Bocquet and P. Sakov,
Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20 (2013), 803-818.
doi: 10.5194/npg-20-803-2013. |
[8] |
J. Brajard, A. Carrassi, M. Bocquet and L. Bertino, Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model, J. Comput. Sci., 2020, http://arXiv.org/pdf/2001.01520.pdf.
doi: 10.5194/gmd-2019-136. |
[9] |
S. L. Brunton, J. L. Proctor and J. N. Kutz,
Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, 113 (2016), 3932-3937.
doi: 10.1073/pnas.1517384113. |
[10] |
R. H. Byrd, P. Lu and J. Nocedal,
A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientific and Statistical Computing, 16 (1995), 1190-1208.
doi: 10.1137/0916069. |
[11] |
M. Carlu, F. Ginelli, V. Lucarini and A. Politi,
Lyapunov analysis of multiscale dynamics: The slow bundle of the two-scale Lorenz 96 model, Nonlin. Processes Geophys., 26 (2019), 73-89.
doi: 10.5194/npg-26-73-2019. |
[12] |
A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Data assimilation in the geosciences: An overview on methods, issues, and perspectives, WIREs Climate Change, 9 (2018), e535.
doi: 10.1002/wcc.535. |
[13] |
B. Chang, L. Meng, E. Haber, F. Tung and D. Begert, Multi-level residual networks from dynamical systems view, in Proceedings of ICLR 2018, 2018. Google Scholar |
[14] |
F. Chollet, Deep Learning with Python, Manning Publications Company, 2017. Google Scholar |
[15] |
A. P. Dempster, N. M. Laird and D. B. Rubin,
Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B, 39 (1977), 1-38.
|
[16] |
P. D. Dueben and P. Bauer,
Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model Dev., 11 (2018), 3999-4009.
doi: 10.5194/gmd-11-3999-2018. |
[17] |
W. E,
A proposal on machine learning via dynamical systems, Commun. Math. Stat., 5 (2017), 1-11.
doi: 10.1007/s40304-017-0103-z. |
[18] |
G. Evensen, Data Assimilation: The Ensemble Kalman Filter, 2nd edition, Springer-Verlag Berlin Heildelberg, 2009.
doi: 10.1007/978-3-642-03711-5. |
[19] |
R. Fablet, S. Ouala and C. Herzet, Bilinear residual neural network for the identification and forecasting of dynamical systems, in EUSIPCO 2018, European Signal Processing Conference, Rome, Italy, 2018, 1–5. Google Scholar |
[20] |
M. Fisher and S. Gürol,
Parallelization in the time dimension of four-dimensional variational data assimilation, Q. J. R. Meteorol. Soc., 143 (2017), 1136-1147.
doi: 10.1002/qj.2997. |
[21] |
Z. Ghahramani and S. T. Roweis, Learning nonlinear dynamical systems using an EM algorithm, in Advances in neural information processing systems, 1999,431–437. Google Scholar |
[22] |
W. W. Hsieh and B. Tang,
Applying neural network models to prediction and data analysis in meteorology and oceanography, Bull. Amer. Meteor. Soc., 79 (1998), 1855-1870.
doi: 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2. |
[23] |
B. R. Hunt, E. J. Kostelich and I. Szunyogh,
Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D, 230 (2007), 112-126.
doi: 10.1016/j.physd.2006.11.008. |
[24] |
E. Kalnay, H. Li, T. Miyoshi, S.-C. Yang and J. Ballabrera-Poy, 4-D-Varor ensemble Kalman filter?, Tellus A, 59 (2007), 758-773. Google Scholar |
[25] |
Y. A. LeCun, L. Bottou, G. B. Orr and K.-R. Müller, Efficient backprop, in Neural networks: Tricks of the trade, Springer, 2012, 9–48. Google Scholar |
[26] |
R. Lguensat, P. Tandeo, P. Ailliot, M. Pulido and R. Fablet,
The analog data assimilation, Mon. Wea. Rev., 145 (2017), 4093-4107.
doi: 10.1175/MWR-D-16-0441.1. |
[27] |
Y. Liu, J.-M. Haussaire, M. Bocquet, Y. Roustan, O. Saunier and A. Mathieu,
Uncertainty quantification of pollutant source retrieval: comparison of Bayesian methods with application to the Chernobyl and Fukushima-Daiichi accidental releases of radionuclides, Q. J. R. Meteorol. Soc., 143 (2017), 2886-2901.
doi: 10.1002/qj.3138. |
[28] |
Z. Long, Y. Lu, X. Ma and B. Dong, PDE-Net: Learning PDEs from Data, , in Proceedings of the 35th International Conference on Machine Learning, 2018. Google Scholar |
[29] |
E. N. Lorenz,
Designing chaotic models, J. Atmos. Sci., 62 (2005), 1574-1587.
doi: 10.1175/JAS3430.1. |
[30] |
E. N. Lorenz and K. A. Emanuel,
Optimal sites for supplementary weather observations: Simulation with a small model, J. Atmos. Sci., 55 (1998), 399-414.
doi: 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2. |
[31] |
L. Magnusson and E. Källén,
Factors influencing skill improvements in the ecmwf forecasting system, Mon. Wea. Rev., 141 (2013), 3142-3153.
doi: 10.1175/MWR-D-12-00318.1. |
[32] |
V. D. Nguyen, S. Ouala, L. Drumetz and R. Fablet, EM-like learning chaotic dynamics from noisy and partial observations, arXiv preprint, arXiv: 1903.10335. Google Scholar |
[33] |
J. Paduart, L. Lauwers, J. Swevers, K. Smolders, J. Schoukens and R. Pintelon,
Identification of nonlinear systems using polynomial nonlinear state space models, Automatica, 46 (2010), 647-656.
doi: 10.1016/j.automatica.2010.01.001. |
[34] |
D. C. Park and Y. Zhu, Bilinear recurrent neural network, in IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on, 3 (1994), 1459–1464.
doi: 10.1109/ICNN.1994.374501. |
[35] |
J. Pathak, B. Hunt, M. Girvan, Z. Lu and E. Ott, Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach, Phys. Rev. Lett., 120 (2018), 024102.
doi: 10.1103/PhysRevLett.120.024102. |
[36] |
J. Pathak, Z. Lu, B. R. Hunt, M. Girvan and E. Ott, Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data, Chaos, 27 (2017), 121102, 9pp.
doi: 10.1063/1.5010300. |
[37] |
M. Pulido, P. Tandeo, M. Bocquet, A. Carrassi and M. Lucini,
Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods, Tellus A, 70 (2018), 1-17.
doi: 10.1080/16000870.2018.1442099. |
[38] |
P. N. Raanes, A. Carrassi and L. Bertino,
Extending the square root method to account for additive forecast noise in ensemble methods, Mon. Wea. Rev., 143 (2015), 3857-3873.
doi: 10.1175/MWR-D-14-00375.1. |
[39] |
V. Rao and A. Sandu,
A time-parallel approach to strong-constraint four-dimensional variational data assimilation, J. Comp. Phys., 313 (2016), 583-593.
doi: 10.1016/j.jcp.2016.02.040. |
[40] |
M. Reichstein, G. Camps-Valls, B. Stevens, J. Denzler, N. Carvalhais and Pr abhat,
Deep learning and process understanding for data-driven Earth system science, Nature, 566 (2019), 195-204.
doi: 10.1038/s41586-019-0912-1. |
[41] |
P. Sakov, J.-M. Haussaire and M. Bocquet,
An iterative ensemble Kalman filter in presence of additive model error, Q. J. R. Meteorol. Soc., 144 (2018), 1297-1309.
doi: 10.1002/qj.3213. |
[42] |
P. Tandeo, P. Ailliot, M. Bocquet, A. Carrassi, T. Miyoshi, M. Pulido and Y. Zhen, A review of innovation based approaches to jointly estimate model and observation error covariance matrices in ensemble data assimilation, 2020, https://arXiv.org/abs/1807.11221, Submitted. Google Scholar |
[43] |
Y. Trémolet, Accounting for an imperfect model in 4D-Var, Q. J. R. Meteorol. Soc., 132 (2006), 2483-2504. Google Scholar |
[44] |
P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott and P. Koumoutsakos, Forecasting of spatio-temporal chaotic dynamics with recurrent neural networks: a comparative study of reservoir computing and backpropagation algorithms, arXiv preprint, arXiv: 1910.05266., Google Scholar |
[45] |
Y.-J. Wang and C.-T. Lin, Runge-Kutta neural network for identification of dynamical systems in high accuracy, IEEE Transactions on Neural Networks, 9 (1998), 294-307. Google Scholar |
[46] |
G. C. G. Wei and M. A. Tanner,
A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms, Journal of the American Statistical Association, 85 (1990), 699-704.
doi: 10.1080/01621459.1990.10474930. |
[47] |
P. Welch,
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Transactions on Audio and Electroacoustics, 15 (1967), 70-73.
doi: 10.1109/TAU.1967.1161901. |
[48] |
S. J. Wright,
Coordinate descent algorithms, Mathematical Programming, 151 (2015), 3-34.
doi: 10.1007/s10107-015-0892-3. |




Model | |||||||
L96 | |||||||
L05Ⅲ |
Model | |||||||
L96 | |||||||
L05Ⅲ |
Model | Scheme | |||
L96 | Approximate | |||
L96 | Full | |||
L05Ⅲ | Approximate | |||
L05Ⅲ | Full |
Model | Scheme | |||
L96 | Approximate | |||
L96 | Full | |||
L05Ⅲ | Approximate | |||
L05Ⅲ | Full |
[1] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
[2] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[3] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[4] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[5] |
Geir Evensen, Javier Amezcua, Marc Bocquet, Alberto Carrassi, Alban Farchi, Alison Fowler, Pieter L. Houtekamer, Christopher K. Jones, Rafael J. de Moraes, Manuel Pulido, Christian Sampson, Femke C. Vossepoel. An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation. Foundations of Data Science, 2020 doi: 10.3934/fods.2021001 |
[6] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[7] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[8] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[9] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[10] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[11] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[12] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[13] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283 |
[14] |
Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021003 |
[15] |
Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021001 |
[16] |
Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021016 |
[17] |
Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010 |
[18] |
Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020174 |
[19] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[20] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]