March  2020, 2(1): 81-81. doi: 10.3934/fods.2020005

Corrigendum to "Cluster, classify, regress: A general method for learning discontinuous functions [1]"

1. 

Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

2. 

Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

3. 

Department of Mathematics, University of Manchester, Manchester, M13 4PL, UK

* Corresponding author: Clement Etienam

Published  March 2020

We as authors of paper [1] wish to correct the order of all authors to alphabetical order according the authors' last names.

Citation: David E. Bernholdt, Mark R. Cianciosa, Clement Etienam, David L. Green, Kody J. H. Law, Jin M. Park. Corrigendum to "Cluster, classify, regress: A general method for learning discontinuous functions [1]". Foundations of Data Science, 2020, 2 (1) : 81-81. doi: 10.3934/fods.2020005
References:
[1]

David E. BernholdtMark R. CianciosaDavid L. GreenJin M. ParkKody J. H. Law and Cl ement Etienam, Cluster, classify, regress: A general method for learning discontinuous functions, Foundations of Data Science, 1 (2019), 491-506.  doi: 10.3934/fods.2019020.  Google Scholar

show all references

References:
[1]

David E. BernholdtMark R. CianciosaDavid L. GreenJin M. ParkKody J. H. Law and Cl ement Etienam, Cluster, classify, regress: A general method for learning discontinuous functions, Foundations of Data Science, 1 (2019), 491-506.  doi: 10.3934/fods.2019020.  Google Scholar

[1]

David E. Bernholdt, Mark R. Cianciosa, David L. Green, Jin M. Park, Kody J. H. Law, Clement Etienam. Cluster, classify, regress: A general method for learning discontinuous functions. Foundations of Data Science, 2019, 1 (4) : 491-506. doi: 10.3934/fods.2019020

[2]

Suresh P. Sethi, Houmin Yan, H. Y. Zhang. Corrigendum. Journal of Industrial & Management Optimization, 2005, 1 (4) : 588-588. doi: 10.3934/jimo.2005.1.588

[3]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[4]

Roberto Alicandro, Andrea Braides, Marco Cicalese. $L^\infty$ jenergies on discontinuous functions. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 905-928. doi: 10.3934/dcds.2005.12.905

[5]

Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057

[6]

Émilie Chouzenoux, Henri Gérard, Jean-Christophe Pesquet. General risk measures for robust machine learning. Foundations of Data Science, 2019, 1 (3) : 249-269. doi: 10.3934/fods.2019011

[7]

Muhammad Aslam Noor, Khalida Inayat Noor. General biconvex functions and bivariational inequalities. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021041

[8]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[9]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

[10]

Gillala Rekha, V Krishna Reddy, Amit Kumar Tyagi. A novel approach for solving skewed classification problem using cluster based ensemble method. Mathematical Foundations of Computing, 2020, 3 (1) : 1-9. doi: 10.3934/mfc.2020001

[11]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[12]

Peigen Cao, Fang Li, Siyang Liu, Jie Pan. A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27: 1-6. doi: 10.3934/era.2019006

[13]

Matthew B. Rudd, Heather A. Van Dyke. Median values, 1-harmonic functions, and functions of least gradient. Communications on Pure & Applied Analysis, 2013, 12 (2) : 711-719. doi: 10.3934/cpaa.2013.12.711

[14]

Janosch Rieger. A learning-enhanced projection method for solving convex feasibility problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021054

[15]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[16]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[17]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[18]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

[19]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29 (3) : 2375-2389. doi: 10.3934/era.2020120

[20]

Morten Brøns. An iterative method for the canard explosion in general planar systems. Conference Publications, 2013, 2013 (special) : 77-83. doi: 10.3934/proc.2013.2013.77

[Back to Top]