[1]
|
A. Aldroubi, K. Hamm, A. B. Koku and A. Sekmen, CUR decompositions, similarity matrices, and subspace clustering, Frontiers in Applied Mathematics and Statistics, 4 (2019), 65.
doi: 10.3389/fams.2018.00065.
|
[2]
|
A. Aldroubi, A. Sekmen, A. B. Koku and A. F. Cakmak, Similarity matrix framework for data from union of subspaces, Applied and Computational Harmonic Analysis, 45 (2018), 425-435.
doi: 10.1016/j.acha.2017.08.006.
|
[3]
|
R. Basri and D. Jacobs, Lambertian reflectance and linear subspaces, IEEE Transactions on Pattern Analysis & Machine Intelligence, 25 (2003), 218-233.
doi: 10.1109/ICCV.2001.937651.
|
[4]
|
C. Boutsidis and D. P. Woodruff, Optimal CUR matrix decompositions, SIAM Journal on Computing, 46 (2017), 543-589.
doi: 10.1137/140977898.
|
[5]
|
S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM Journal on Scientific Computing, 32 (2010), 2737-2764.
doi: 10.1137/090766498.
|
[6]
|
J. Chiu and L. Demanet, Sublinear randomized algorithms for skeleton decompositions, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 1361-1383.
doi: 10.1137/110852310.
|
[7]
|
J. P. Costeira and T. Kanade, A multibody factorization method for independently moving objects, International Journal of Computer Vision, 29 (1998), 159-179.
doi: 10.1023/A:1008000628999.
|
[8]
|
S. Demko, Condition numbers of rectangular systems and bounds for generalized inverses, Linear Algebra and its Applications, 78 (1986), 199-206.
doi: 10.1016/0024-3795(86)90024-8.
|
[9]
|
J. Dongarra and F. Sullivan, Guest editors introduction to the top 10 algorithms, Computing in Science & Engineering, 2 (2000), 22-23.
doi: 10.1109/MCISE.2000.814652.
|
[10]
|
P. Drineas, R. Kannan and M. W. Mahoney, Fast monte carlo algorithms for matrices. III: Computing a compressed approximate matrix decomposition, SIAM Journal on Computing, 36 (2006), 184-206.
doi: 10.1137/S0097539704442702.
|
[11]
|
P. Drineas and M. W. Mahoney, On the Nyström method for approximating a Gram matrix for improved kernel-based learning, Journal of Machine Learning Research, 6 (2005), 2153–2175, http://www.jmlr.org/papers/volume6/drineas05a/drineas05a.pdf.
|
[12]
|
P. Drineas, M. W. Mahoney and S. Muthukrishnan, Relative-error $CUR$ matrix decompositions, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 844-881.
doi: 10.1137/07070471X.
|
[13]
|
E. Elhamifar and R. Vidal, Sparse subspace clustering: Algorithm, theory, and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 2765–2781, https://ieeexplore.ieee.org/document/6482137.
doi: 10.1109/TPAMI.2013.57.
|
[14]
|
A. Gittens, The spectral norm error of the naive Nystrom extension, preprint, arXiv: 1110.5305.
|
[15]
|
A. Gittens and M. W. Mahoney, Revisiting the Nyström method for improved large-scale machine learning, The Journal of Machine Learning Research, 17 (2016), Paper No. 117, 65 pp, https://dl.acm.org/doi/abs/10.5555/2946645.3007070.
|
[16]
|
G. H. Golub and C. F. van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies
in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013.
|
[17]
|
L. Guttman, Enlargement methods for computing the inverse matrix, The Annals of Mathematical Statistics, 17 (1946), 336-343.
doi: 10.1214/aoms/1177730946.
|
[18]
|
R. Hadani and A. Singer, Representation theoretic patterns in three dimensional cryo-electron
microscopy I: The intrinsic reconstitution algorithm, Annals of Mathematics (2), 174 (2011),
1219–1241.
doi: 10.4007/annals.2011.174.2.11.
|
[19]
|
K. Hamm and L. X. Huang, Perturbations of CUR decompositions, e-prints, arXiv: 1908.08101.
|
[20]
|
K. Hamm and L. X. Huang, Perspectives on CUR decompositions, Applied and Computational Harmonic Analysis, 48 (2020), 1088-1099.
doi: 10.1016/j.acha.2019.08.006.
|
[21]
|
R. Kannan and S. Vempala, Randomized algorithms in numerical linear algebra, Acta Numerica, 26 (2017), 95-135.
doi: 10.1017/S0962492917000058.
|
[22]
|
G. C. Liu, Z. C. Lin, S. C. Yan, J. Sun, Y. Yu and Y. Ma, Robust recovery of subspace structures by low-rank representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2012), 171–184, https://ieeexplore.ieee.org/document/6180173.
doi: 10.1109/TPAMI.2012.88.
|
[23]
|
M. W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis, Proc. Natl. Acad. Sci. USA, 106 (2009), 697-702.
doi: 10.1073/pnas.0803205106.
|
[24]
|
R. Penrose, On best approximate solutions of linear matrix equations, Proc. Cambridge Philos. Soc., 52 (1956), 17-19.
doi: 10.1017/S0305004100030929.
|
[25]
|
F. Pourkamali-Anaraki and S. Becker, Improved fixed-rank Nyström approximation via QR decomposition: Practical and theoretical aspects, Neurocomputing, 363 (2019), 261-272.
doi: 10.1016/j.neucom.2019.06.070.
|
[26]
|
M. Rudelson, Personal Communication, 2019.
|
[27]
|
M. Rudelson and R. Vershynin, Sampling from large matrices: An approach through geometric functional analysis, Journal of the ACM, 54 (2007), Art. 21, 19 pp.
doi: 10.1145/1255443.1255449.
|
[28]
|
D. C. Sorensen and M. Embree, A DEIM induced CUR factorization, SIAM Journal on Scientific Computing, 38 (2016), A1454–A1482.
doi: 10.1137/140978430.
|
[29]
|
J. A. Tropp, Column subset selection, matrix factorization, and eigenvalue optimization, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, (2009), 978–986.
doi: 10.1137/1.9781611973068.106.
|
[30]
|
M. Udell and A. Townsend, Why are big data matrices approximately low rank?, SIAM Journal on Mathematics of Data Science, 1 (2019), 144-160.
doi: 10.1137/18M1183480.
|
[31]
|
R. Vidal, Subspace clustering, IEEE Signal Processing Magazine, 28 (2011), 52–68, https://ieeexplore.ieee.org/document/5714408.
doi: 10.1109/MSP.2010.939739.
|
[32]
|
S. Voronin and P.-G. Martinsson, Efficient algorithms for CUR and interpolative matrix decompositions, Advances in Computational Mathematics, 43 (2017), 495-516.
doi: 10.1007/s10444-016-9494-8.
|
[33]
|
T. Yang, L. Zhang, R. Jin and S. Zhu, An explicit sampling dependent spectral error bound for column subset selection, International Conference on Machine Learning, (2015), 135–143, http://proceedings.mlr.press/v37/yanga15.pdf.
|