\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Posterior contraction rates for non-parametric state and drift estimation

  • * Corresponding author: Sebastian Reich

    * Corresponding author: Sebastian Reich 
Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • We consider a combined state and drift estimation problem for the linear stochastic heat equation. The infinite-dimensional Bayesian inference problem is formulated in terms of the Kalman–Bucy filter over an extended state space, and its long-time asymptotic properties are studied. Asymptotic posterior contraction rates in the unknown drift function are the main contribution of this paper. Such rates have been studied before for stationary non-parametric Bayesian inverse problems, and here we demonstrate the consistency of our time-dependent formulation with these previous results building upon scale separation and a slow manifold approximation.

    Mathematics Subject Classification: Primary: 62G20, 62G05, 62F15; Secondary: 60H15, 62M20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  We display the time evolution of the bias $ |m_t^f(k)-\mathcal{F}^\ast(k)| $ and the variances $ \sigma_t^f(k) $ and $ p_t^f(k) $ for increasing values of $ k $. We compare the results from the combined state and parameter estimation problem (labelled 'dynamic') with those from the associated direct inference problem in the parameter alone (labelled 'stationary'). The delay in the onset of the asymptotic $ t^{-1} $ regime as $ k $ increases can be clearly seen as well as that $ p_t^f(k) < \sigma_t^f(k) $ for all $ t>0 $. Furthermore, as theoretically predicted, the dynamic and stationary problem formulations behave almost identically in terms of their drift estimates

  • [1] R. Altmeyer and M. Reiß, Nonparametric estimation for linear SPDEs from local measurements, Annals of Appl. Probability, preprint, arXiv: 1903.06984.
    [2] K. Bergemann and S. Reich, An ensemble Kalman–Bucy filter for continuous data assimilation, Meteorolog. Zeitschrift, 21 (2012), 213-219.  doi: 10.1127/0941-2948/2012/0307.
    [3] I. Cialenco, Statistical inference for SPDEs: An overview, Stat. Inference Stoch. Process., 21 (2018), 309-329.  doi: 10.1007/s11203-018-9177-9.
    [4] R. Curtain, A survey of infinite-dimensional filtering, SIAM Review, 17 (1975), 395-411.  doi: 10.1137/1017041.
    [5] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 1st edition, Encyclopedia of Mathematics and its Applications, 45, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.
    [6] J. de WiljesS. Reich and W. Stannat, Long-time stability and accuracy of the ensemble Kalman–Bucy filter for fully observed processes and small measurement noise, SIAM J. Appl. Dyn. Syst., 17 (2018), 1152-1181.  doi: 10.1137/17M1119056.
    [7] S. Ghosal and A. van der Vaart, Fundamentals of Nonparametric Bayesian Inference, Cambridge Series in Statistical and Probabilistic Mathematics, 44, Cambridge University Press, Cambridge, 2017. doi: 10.1017/9781139029834.
    [8] E. Giné and R. Nickl, Mathematical Foundations of Infinite-Dimensional Statistical Models, Cambridge Series in Statistical and Probabilistic Mathematics, 40, Cambridge University Press, Cambridge, 2015. doi: 10.1017/CBO9781107337862.
    [9] F. GötzeA. NaumovV. Spokoiny and V. Ulyanov, Large ball probabilities, Gaussian comparison and anti-concentration, Bernoulli, 25 (2019), 2538-2563.  doi: 10.3150/18-BEJ1062.
    [10] M. Hairer, An introduction to stochastic PDEs, unpublished lecture notes, arXiv: 0907.4178.
    [11] A. Jazwinski, Stochastic Processes and Filtering Theory, Mathematics in Science and Engineering, 64, Academic Press, New York, 1970.
    [12] B. T. KnapikB. T. SzabóA. W. van der Vaart and J. H. van Zanten, Bayes procedures for adaptive inference in inverse problems for the white noise model, Probab. Theory Relat. Fields, 164 (2016), 771-813.  doi: 10.1007/s00440-015-0619-7.
    [13] B. T. KnapikA. W. van der Vaart and J. H. van Zanten, Bayesian inverse problems with Gaussian priors, Annals of Statistics, 39 (2011), 2626-2657.  doi: 10.1214/11-AOS920.
    [14] G. J. Lord, C. E. Powell and T. Shardlow, An Introduction to Computational Stochastic PDEs, 1st edition, Cambridge Texts in Applied Mathematics, 50, Cambridge University Press, Cambridge, 2014. doi: 10.1017/CBO9781139017329.
    [15] N. Nüsken, S. Reich and P. J. Rozdeba, State and parameter estimation from observed signal increments, Entropy, 21 (2019), 505. doi: 10.3390/e21050505.
    [16] E. Shchepakina, V. Sobolev and M. P. Mortell, Singular Perturbations: Introduction to System Order Reduction Methods with Applications, Lecture Notes in Mathematics, 2114, Springer International Publishing, 2014. doi: 10.1007/978-3-319-09570-7.
    [17] D. Simon, Optimal State Estimation, Wiley, Hoboken, 2006. doi: 10.1002/0470045345.
    [18] A. Taghvaei, J. de Wiljes, P. Mehta and S. Reich, Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem, J. Dyn. Sys., Meas., Control., 140 (2017), 030904. doi: 10.1115/1.4037780.
    [19] F. Verhulst, Singular perturbation methods for slow-fast dynamics, Nonlinear Dynamics, 50 (2007), 747-753.  doi: 10.1007/s11071-007-9236-z.
    [20] D. Yan, Bayesian inference for Gaussian models: Inverse problems and evolution equations, PhD thesis, Universiteit Leiden, Leiden, 2020. doi: 1887/86070.
    [21] T. YangP. Mehta and S. Meyn, Feedback particle filter, IEEE Trans. Automatic Control, 58 (2013), 2465-2480.  doi: 10.1109/TAC.2013.2258825.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(1849) PDF downloads(190) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return