
- Previous Article
- FoDS Home
- This Issue
-
Next Article
Estimating linear response statistics using orthogonal polynomials: An RKHS formulation
Certified and fast computations with shallow covariance kernels
1. | MATH-ANCHP, École Polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland |
2. | Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom |
3. | Department of Mathematics and Computer Science, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands |
4. | Department of Mathematics, Technical University of Munich, 85748 Garching, Germany |
Many techniques for data science and uncertainty quantification demand efficient tools to handle Gaussian random fields, which are defined in terms of their mean functions and covariance operators. Recently, parameterized Gaussian random fields have gained increased attention, due to their higher degree of flexibility. However, especially if the random field is parameterized through its covariance operator, classical random field discretization techniques fail or become inefficient. In this work we introduce and analyze a new and certified algorithm for the low-rank approximation of a parameterized family of covariance operators which represents an extension of the adaptive cross approximation method for symmetric positive definite matrices. The algorithm relies on an affine linear expansion of the covariance operator with respect to the parameters, which needs to be computed in a preprocessing step using, e.g., the empirical interpolation method. We discuss and test our new approach for isotropic covariance kernels, such as Matérn kernels. The numerical results demonstrate the advantages of our approach in terms of computational time and confirm that the proposed algorithm provides the basis of a fast sampling procedure for parameter dependent Gaussian random fields.
References:
[1] |
M. Bachmayr, I. G. Graham, V. K. Nguyen and R. Scheichl,
Unified analysis of periodization-based sampling methods for Matérn covariances, SIAM Journal on Numerical Analysis, 58 (2020), 2953-2980.
doi: 10.1137/19M1269877. |
[2] |
M. Barrault, Y. Maday, N. C. Nguyen and A. T. Patera,
An 'empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339 (2004), 667-672.
doi: 10.1016/j.crma.2004.08.006. |
[3] |
M. Bebendorf,
Approximation of boundary element matrices, Numer. Math., 86 (2000), 565-589.
doi: 10.1007/PL00005410. |
[4] |
M. Bebendorf,
Adaptive cross approximation of multivariate functions, Constr. Approx., 34 (2011), 149-179.
doi: 10.1007/s00365-010-9103-x. |
[5] |
H.-J. Bungartz and M. Griebel,
Sparse grids, Acta Numer., 13 (2004), 147-269.
doi: 10.1017/S0962492904000182. |
[6] |
A. A. Contreras, P. Mycek, O. P. Le Maȋtre, F. Rizzi, B. Debusschere and O. M. Knio, Parallel domain decomposition strategies for stochastic elliptic equations. Part A: Local Karhunen-Loève representations, SIAM J. Sci. Comput., 40 (2018), C520–C546.
doi: 10.1137/17M1132185. |
[7] |
A. Damianou and N. Lawrence, Deep Gaussian processes, in Proceedings of the Sixteenth International Workshop on Artificial Intelligence and Statistics (AISTATS) (eds. C. Carvalho and P. Ravikumar), AISTATS '13, JMLR W & CP 31, (2013), 207–215. Google Scholar |
[8] |
C. R. Dietrich and G. N. Newsam,
Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM J. Sci. Comput., 18 (1997), 1088-1107.
doi: 10.1137/S1064827592240555. |
[9] |
M. M. Dunlop, M. A. Girolami, A. M. Stuart and A. L. Teckentrup, How deep are deep Gaussian processes?, J. Mach. Learn. Res., 19 (2018), 1–46, http://jmlr.org/papers/v19/18-015.html. |
[10] |
M. M. Dunlop, M. A. Iglesias and A. M. Stuart,
Hierarchical Bayesian level set inversion, Statistics and Computing, 27 (2017), 1555-1584.
doi: 10.1007/s11222-016-9704-8. |
[11] |
M. F. Emzir, S. J. Lasanen, Z. Purisha, L. Roininen and S. Särkkä, Non-stationary multi-layered Gaussian priors for Bayesian inversion, Inverse Problems, 37 (2021), 015002.
doi: 10.1088/1361-6420/abc962. |
[12] |
M. F. Emzir, S. Lasanen, Z. Purisha and S. Särkkä, Hilbert-space reduced-rank methods for deep Gaussian processes, in 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), (2019), 1–6. Google Scholar |
[13] |
M. Feischl, F. Y. Kuo and I. H. Sloan,
Fast random field generation with $H$-matrices, Numer. Math., 140 (2018), 639-676.
doi: 10.1007/s00211-018-0974-2. |
[14] |
L. Foster, A. Waagen, N. Aijaz and et al., Stable and efficient Gaussian process calculations, J. Mach. Learn. Res., 10 (2009), 857–882, http://www.jmlr.org/papers/v10/foster09a.html. |
[15] |
A. Garriga-Alonso, C. E. Rasmussen and L. Aitchison, Deep convolutional networks as shallow Gaussian processes, in 7th International Conference on Learning Representations, 2019. Google Scholar |
[16] |
M. Gelbrich,
On a formula for the $L^2$ Wasserstein metric between measures on Euclidean and Hilbert spaces, Math. Nachr., 147 (1990), 185-203.
doi: 10.1002/mana.19901470121. |
[17] |
A. L. Gibbs and F. E. Su, On choosing and bounding probability metrics, Int. Stat. Rev., 70 (2002), 419-435. Google Scholar |
[18] |
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th edition, Johns Hopkins University
Press, Baltimore, MD, 2013. |
[19] |
I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl and I. H. Sloan,
Analysis of circulant embedding methods for sampling stationary random fields, SIAM J. Numer. Anal., 56 (2018), 1871-1895.
doi: 10.1137/17M1149730. |
[20] |
N. Halko, P. G. Martinsson and J. A. Tropp,
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), 217-288.
doi: 10.1137/090771806. |
[21] |
H. Harbrecht, M. Peters and R. Schneider,
On the low-rank approximation by the pivoted Cholesky decomposition, Appl. Numer. Math., 62 (2012), 428-440.
doi: 10.1016/j.apnum.2011.10.001. |
[22] |
H. Harbrecht, M. Peters and M. Siebenmorgen,
Efficient approximation of random fields for numerical applications, Numer. Linear Algebra Appl., 22 (2015), 596-617.
doi: 10.1002/nla.1976. |
[23] |
O. Haug, T. L. Thorarinsdottir, S. H. Sørbye and C. L. E. Franzke,
Spatial trend analysis of gridded temperature data at varying spatial scales, Advances in Statistical Climatology, Meteorology and Oceanography, 6 (2020), 1-12.
doi: 10.5194/ascmo-6-1-2020. |
[24] |
J. S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer Briefs in Mathematics, Springer, Cham, 2016.
doi: 10.1007/978-3-319-22470-1. |
[25] |
J. S. Hesthaven, B. Stamm and S. Zhang,
Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods, ESAIM Math. Model. Numer. Anal., 48 (2014), 259-283.
doi: 10.1051/m2an/2013100. |
[26] |
N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898718027. |
[27] |
B. N. Khoromskij, A. Litvinenko and H. G. Matthies,
Application of hierarchical matrices for computing the Karhunen-Loève expansion, Computing, 84 (2009), 49-67.
doi: 10.1007/s00607-008-0018-3. |
[28] |
U. Khristenko, L. Scarabosio, P. Swierczynski, E. Ullmann and B. Wohlmuth,
Analysis of boundary effects on PDE-based sampling of Whittle-Matérn random fields, SIAM/ASA J. Uncertain. Quantif., 7 (2019), 948-974.
doi: 10.1137/18M1215700. |
[29] |
J. Latz, M. Eisenberger and E. Ullmann,
Fast sampling of parameterised Gaussian random fields, Comput. Methods Appl. Mech. Engrg., 348 (2019), 978-1012.
doi: 10.1016/j.cma.2019.02.003. |
[30] |
F. Lindgren, H. v. Rue and J. Lindström,
An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B Stat. Methodol., 73 (2011), 423-498.
doi: 10.1111/j.1467-9868.2011.00777.x. |
[31] |
A. Litvinenko, Y. Sun, M. G. Genton and D. E. Keyes,
Likelihood approximation with hierarchical matrices for large spatial datasets, Comput. Statist. Data Anal., 137 (2019), 115-132.
doi: 10.1016/j.csda.2019.02.002. |
[32] |
S. L. Lohr, Sampling: Design and Analysis, 2nd edition, Brooks/Cole, Cengage Learning, Boston, MA, 2010. |
[33] |
V. Minden, A. Damle, K. L. Ho and L. Ying,
Fast spatial Gaussian process maximum likelihood estimation via skeletonization factorizations, Multiscale Model. Simul., 15 (2017), 1584-1611.
doi: 10.1137/17M1116477. |
[34] |
A. Nouy,
A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations, Comput. Methods Appl. Mech. Engrg., 199 (2010), 1603-1626.
doi: 10.1016/j.cma.2010.01.009. |
[35] |
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, The MIT Press, 2006.
![]() |
[36] |
A. K. Saibaba, J. Lee and P. K. Kitanidis,
Randomized algorithms for generalized Hermitian eigenvalue problems with application to computing Karhunen-Loève expansion, Numer. Linear Algebra Appl., 23 (2016), 314-339.
doi: 10.1002/nla.2026. |
[37] |
F. Schäfer, T. J. Sullivan and H. Owhadi, Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity, arXiv preprint, arXiv: 1706.02205. Google Scholar |
[38] |
C. Schwab and R. A. Todor,
Karhunen-Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys., 217 (2006), 100-122.
doi: 10.1016/j.jcp.2006.01.048. |
[39] |
I. Sraj, O. P. Le Maȋtre, O. M. Knio and I. Hoteit,
Coordinate transformation and polynomial chaos for the Bayesian inference of a Gaussian process with parametrized prior covariance function, Comput. Methods Appl. Mech. Engrg., 298 (2016), 205-228.
doi: 10.1016/j.cma.2015.10.002. |
[40] |
M. L. Stein, Interpolation of Spatial Data, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1494-6. |
[41] |
A. M. Stuart and A. L. Teckentrup,
Posterior consistency for Gaussian process approximations of Bayesian posterior distributions, Math. Comp., 87 (2018), 721-753.
doi: 10.1090/mcom/3244. |
[42] |
A. Townsend, Computing with Functions in two Dimensions, ProQuest LLC, Ann Arbor, MI, 2014, Thesis (D.Phil.)–University of Oxford (United Kingdom). |
[43] |
A. Townsend and L. N. Trefethen, An extension of Chebfun to two dimensions, SIAM J. Sci. Comput., 35 (2013), C495–C518.
doi: 10.1137/130908002. |
[44] |
A. Townsend and L. N. Trefethen, Continuous analogues of matrix factorizations, Proc. A., 471 (2015), 20140585, 21.
doi: 10.1098/rspa.2014.0585. |
[45] |
C. Villani, Optimal Transport, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9. |
[46] |
C. K. Wikle, Hierarchical models for uncertainty quantification: An overview, in Handbook of Uncertainty Quantification (eds. R. Ghanem, D. Higdon and H. Owhadi), Springer International Publishing, Cham, (2016), 1–26. |
[47] |
C. K. Williams and M. Seeger, Using the Nyström method to speed up kernel machines, in Advances in Neural Information Processing Systems, (2001), 682–688. Google Scholar |
show all references
References:
[1] |
M. Bachmayr, I. G. Graham, V. K. Nguyen and R. Scheichl,
Unified analysis of periodization-based sampling methods for Matérn covariances, SIAM Journal on Numerical Analysis, 58 (2020), 2953-2980.
doi: 10.1137/19M1269877. |
[2] |
M. Barrault, Y. Maday, N. C. Nguyen and A. T. Patera,
An 'empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339 (2004), 667-672.
doi: 10.1016/j.crma.2004.08.006. |
[3] |
M. Bebendorf,
Approximation of boundary element matrices, Numer. Math., 86 (2000), 565-589.
doi: 10.1007/PL00005410. |
[4] |
M. Bebendorf,
Adaptive cross approximation of multivariate functions, Constr. Approx., 34 (2011), 149-179.
doi: 10.1007/s00365-010-9103-x. |
[5] |
H.-J. Bungartz and M. Griebel,
Sparse grids, Acta Numer., 13 (2004), 147-269.
doi: 10.1017/S0962492904000182. |
[6] |
A. A. Contreras, P. Mycek, O. P. Le Maȋtre, F. Rizzi, B. Debusschere and O. M. Knio, Parallel domain decomposition strategies for stochastic elliptic equations. Part A: Local Karhunen-Loève representations, SIAM J. Sci. Comput., 40 (2018), C520–C546.
doi: 10.1137/17M1132185. |
[7] |
A. Damianou and N. Lawrence, Deep Gaussian processes, in Proceedings of the Sixteenth International Workshop on Artificial Intelligence and Statistics (AISTATS) (eds. C. Carvalho and P. Ravikumar), AISTATS '13, JMLR W & CP 31, (2013), 207–215. Google Scholar |
[8] |
C. R. Dietrich and G. N. Newsam,
Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM J. Sci. Comput., 18 (1997), 1088-1107.
doi: 10.1137/S1064827592240555. |
[9] |
M. M. Dunlop, M. A. Girolami, A. M. Stuart and A. L. Teckentrup, How deep are deep Gaussian processes?, J. Mach. Learn. Res., 19 (2018), 1–46, http://jmlr.org/papers/v19/18-015.html. |
[10] |
M. M. Dunlop, M. A. Iglesias and A. M. Stuart,
Hierarchical Bayesian level set inversion, Statistics and Computing, 27 (2017), 1555-1584.
doi: 10.1007/s11222-016-9704-8. |
[11] |
M. F. Emzir, S. J. Lasanen, Z. Purisha, L. Roininen and S. Särkkä, Non-stationary multi-layered Gaussian priors for Bayesian inversion, Inverse Problems, 37 (2021), 015002.
doi: 10.1088/1361-6420/abc962. |
[12] |
M. F. Emzir, S. Lasanen, Z. Purisha and S. Särkkä, Hilbert-space reduced-rank methods for deep Gaussian processes, in 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), (2019), 1–6. Google Scholar |
[13] |
M. Feischl, F. Y. Kuo and I. H. Sloan,
Fast random field generation with $H$-matrices, Numer. Math., 140 (2018), 639-676.
doi: 10.1007/s00211-018-0974-2. |
[14] |
L. Foster, A. Waagen, N. Aijaz and et al., Stable and efficient Gaussian process calculations, J. Mach. Learn. Res., 10 (2009), 857–882, http://www.jmlr.org/papers/v10/foster09a.html. |
[15] |
A. Garriga-Alonso, C. E. Rasmussen and L. Aitchison, Deep convolutional networks as shallow Gaussian processes, in 7th International Conference on Learning Representations, 2019. Google Scholar |
[16] |
M. Gelbrich,
On a formula for the $L^2$ Wasserstein metric between measures on Euclidean and Hilbert spaces, Math. Nachr., 147 (1990), 185-203.
doi: 10.1002/mana.19901470121. |
[17] |
A. L. Gibbs and F. E. Su, On choosing and bounding probability metrics, Int. Stat. Rev., 70 (2002), 419-435. Google Scholar |
[18] |
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th edition, Johns Hopkins University
Press, Baltimore, MD, 2013. |
[19] |
I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl and I. H. Sloan,
Analysis of circulant embedding methods for sampling stationary random fields, SIAM J. Numer. Anal., 56 (2018), 1871-1895.
doi: 10.1137/17M1149730. |
[20] |
N. Halko, P. G. Martinsson and J. A. Tropp,
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), 217-288.
doi: 10.1137/090771806. |
[21] |
H. Harbrecht, M. Peters and R. Schneider,
On the low-rank approximation by the pivoted Cholesky decomposition, Appl. Numer. Math., 62 (2012), 428-440.
doi: 10.1016/j.apnum.2011.10.001. |
[22] |
H. Harbrecht, M. Peters and M. Siebenmorgen,
Efficient approximation of random fields for numerical applications, Numer. Linear Algebra Appl., 22 (2015), 596-617.
doi: 10.1002/nla.1976. |
[23] |
O. Haug, T. L. Thorarinsdottir, S. H. Sørbye and C. L. E. Franzke,
Spatial trend analysis of gridded temperature data at varying spatial scales, Advances in Statistical Climatology, Meteorology and Oceanography, 6 (2020), 1-12.
doi: 10.5194/ascmo-6-1-2020. |
[24] |
J. S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer Briefs in Mathematics, Springer, Cham, 2016.
doi: 10.1007/978-3-319-22470-1. |
[25] |
J. S. Hesthaven, B. Stamm and S. Zhang,
Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods, ESAIM Math. Model. Numer. Anal., 48 (2014), 259-283.
doi: 10.1051/m2an/2013100. |
[26] |
N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898718027. |
[27] |
B. N. Khoromskij, A. Litvinenko and H. G. Matthies,
Application of hierarchical matrices for computing the Karhunen-Loève expansion, Computing, 84 (2009), 49-67.
doi: 10.1007/s00607-008-0018-3. |
[28] |
U. Khristenko, L. Scarabosio, P. Swierczynski, E. Ullmann and B. Wohlmuth,
Analysis of boundary effects on PDE-based sampling of Whittle-Matérn random fields, SIAM/ASA J. Uncertain. Quantif., 7 (2019), 948-974.
doi: 10.1137/18M1215700. |
[29] |
J. Latz, M. Eisenberger and E. Ullmann,
Fast sampling of parameterised Gaussian random fields, Comput. Methods Appl. Mech. Engrg., 348 (2019), 978-1012.
doi: 10.1016/j.cma.2019.02.003. |
[30] |
F. Lindgren, H. v. Rue and J. Lindström,
An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B Stat. Methodol., 73 (2011), 423-498.
doi: 10.1111/j.1467-9868.2011.00777.x. |
[31] |
A. Litvinenko, Y. Sun, M. G. Genton and D. E. Keyes,
Likelihood approximation with hierarchical matrices for large spatial datasets, Comput. Statist. Data Anal., 137 (2019), 115-132.
doi: 10.1016/j.csda.2019.02.002. |
[32] |
S. L. Lohr, Sampling: Design and Analysis, 2nd edition, Brooks/Cole, Cengage Learning, Boston, MA, 2010. |
[33] |
V. Minden, A. Damle, K. L. Ho and L. Ying,
Fast spatial Gaussian process maximum likelihood estimation via skeletonization factorizations, Multiscale Model. Simul., 15 (2017), 1584-1611.
doi: 10.1137/17M1116477. |
[34] |
A. Nouy,
A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations, Comput. Methods Appl. Mech. Engrg., 199 (2010), 1603-1626.
doi: 10.1016/j.cma.2010.01.009. |
[35] |
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, The MIT Press, 2006.
![]() |
[36] |
A. K. Saibaba, J. Lee and P. K. Kitanidis,
Randomized algorithms for generalized Hermitian eigenvalue problems with application to computing Karhunen-Loève expansion, Numer. Linear Algebra Appl., 23 (2016), 314-339.
doi: 10.1002/nla.2026. |
[37] |
F. Schäfer, T. J. Sullivan and H. Owhadi, Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity, arXiv preprint, arXiv: 1706.02205. Google Scholar |
[38] |
C. Schwab and R. A. Todor,
Karhunen-Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys., 217 (2006), 100-122.
doi: 10.1016/j.jcp.2006.01.048. |
[39] |
I. Sraj, O. P. Le Maȋtre, O. M. Knio and I. Hoteit,
Coordinate transformation and polynomial chaos for the Bayesian inference of a Gaussian process with parametrized prior covariance function, Comput. Methods Appl. Mech. Engrg., 298 (2016), 205-228.
doi: 10.1016/j.cma.2015.10.002. |
[40] |
M. L. Stein, Interpolation of Spatial Data, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1494-6. |
[41] |
A. M. Stuart and A. L. Teckentrup,
Posterior consistency for Gaussian process approximations of Bayesian posterior distributions, Math. Comp., 87 (2018), 721-753.
doi: 10.1090/mcom/3244. |
[42] |
A. Townsend, Computing with Functions in two Dimensions, ProQuest LLC, Ann Arbor, MI, 2014, Thesis (D.Phil.)–University of Oxford (United Kingdom). |
[43] |
A. Townsend and L. N. Trefethen, An extension of Chebfun to two dimensions, SIAM J. Sci. Comput., 35 (2013), C495–C518.
doi: 10.1137/130908002. |
[44] |
A. Townsend and L. N. Trefethen, Continuous analogues of matrix factorizations, Proc. A., 471 (2015), 20140585, 21.
doi: 10.1098/rspa.2014.0585. |
[45] |
C. Villani, Optimal Transport, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9. |
[46] |
C. K. Wikle, Hierarchical models for uncertainty quantification: An overview, in Handbook of Uncertainty Quantification (eds. R. Ghanem, D. Higdon and H. Owhadi), Springer International Publishing, Cham, (2016), 1–26. |
[47] |
C. K. Williams and M. Seeger, Using the Nyström method to speed up kernel machines, in Advances in Neural Information Processing Systems, (2001), 682–688. Google Scholar |












[1] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[2] |
Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107 |
[3] |
Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 |
[4] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[5] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[6] |
Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300 |
[7] |
Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066 |
[8] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
[9] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[10] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[11] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[12] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[13] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[14] |
Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020389 |
[15] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[16] |
Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125 |
[17] |
Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, 2021, 15 (2) : 339-366. doi: 10.3934/ipi.2020071 |
[18] |
Scott Schmieding, Rodrigo Treviño. Random substitution tilings and deviation phenomena. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021020 |
[19] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[20] |
Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]