\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation

  • *Corresponding author: Geir Evensen

    *Corresponding author: Geir Evensen 
The first author is supported by NORCE
Abstract / Introduction Full Text(HTML) Figure(22) / Table(12) Related Papers Cited by
  • This work demonstrates the efficiency of using iterative ensemble smoothers to estimate the parameters of an SEIR model. We have extended a standard SEIR model with age-classes and compartments of sick, hospitalized, and dead. The data conditioned on are the daily numbers of accumulated deaths and the number of hospitalized. Also, it is possible to condition the model on the number of cases obtained from testing. We start from a wide prior distribution for the model parameters; then, the ensemble conditioning leads to a posterior ensemble of estimated parameters yielding model predictions in close agreement with the observations. The updated ensemble of model simulations has predictive capabilities and include uncertainty estimates. In particular, we estimate the effective reproductive number as a function of time, and we can assess the impact of different intervention measures. By starting from the updated set of model parameters, we can make accurate short-term predictions of the epidemic development assuming knowledge of the future effective reproductive number. Also, the model system allows for the computation of long-term scenarios of the epidemic under different assumptions. We have applied the model system on data sets from several countries, i.e., the four European countries Norway, England, The Netherlands, and France; the province of Quebec in Canada; the South American countries Argentina and Brazil; and the four US states Alabama, North Carolina, California, and New York. These countries and states all have vastly different developments of the epidemic, and we could accurately model the SARS-CoV-2 outbreak in all of them. We realize that more complex models, e.g., with regional compartments, may be desirable, and we suggest that the approach used here should be applicable also for these models.

    Mathematics Subject Classification: Primary:65K10, 65K99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Flow diagram of the SEIR model

    Figure 2.  Norway: This figure summarizes scenarios related to opening up kindergartens and schools on the 20th of April. The left plots show the ensemble means and the 100 first ensemble realizations, for the number of hospitalized and the accumulated amount of deaths for different scenarios of future $ R(t) = 0.8,\, 1.0 $, and $ 1.2 $. The right plots show the prior and posterior ensembles of $ R(t) $. The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 3.  Norway (base case): For the two cases (left and right plots), the only difference is the prior-guess for $ R(t) $ after starting the interventions. For the first two rows of plots, we show the posterior ensemble means and the 100 first realizations of the posterior solution from ESMDA. The blue lines are the total number of cases, while the gray lines give the number of active cases. The red curves denote the number of hospitalized, and green lines show the total number of deaths. The upper plot uses a log $ y $-axis. The second row is a zoom of the upper plot using a linear $ y $-axis. The lower plots show the corresponding prior and posterior estimates of $ R(t) $ for the two cases. The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 4.  England: The plots show the data available for assimilation. Three different agencies report the number of deaths, the UK government press conference publishes the number of people in hospitals, CHESS reports the daily hospital admissions, and PHE presents the number of new cases

    Figure 5.  England. Left panels: ESMDA posterior estimates of the accumulated number of deaths (green), the daily number of hospitalizations (red), active (gray), and total cases (blue). Observations are displayed in black. Right panels: Prior and ESMDA posterior estimates of the effective reproduction number $ R(t) $. Ensemble members (thin lines) and ensemble means (thick lines). Assimilation experiment D (top panels), DH (mid panels) and DHC (bottom panels). The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 6.  Québec: From top to bottom, the plots show the results from the three assimilation experiments DHC, DH, and D. The left column presents the accumulated number of deaths and the number of hospitalizations, and the right column shows corresponding the reproductive number $ R(t) $ for the experiments. Time is since the start of the epidemic on March 8th. Observations are indicated with points when used to obtain the model fit. The solid lines are for the ensemble mean posterior estimates. After May 28th, we kept the realizations of $ R(t) $ constant and equal to the latest values for the remainder of the simulation. The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 7.  Québec: The plots show verification of retroactive week-two forecasts for experiments DHC, DH, and D. For the predictions, issued one week apart, we show the mean estimate with the full line, and the dashed lines give the mean value plus or minus one standard deviation. We indicate the reported values with crosses

    Figure 8.  Québec: The plots present verification of the week-two forecasts (retroactively) issued on April 1st for experiment D (left) and the experiment DHC (right). The solid line denotes the mean prediction. The reported values used to fit the model parameters are indicated with circles, while the triangles are the values used for verification

    Figure 9.  The Netherlands: The plots show the results from the Cases 1I, 1H, 2H, and 3H, from top to bottom. The left plots include model estimates of the number of hospitalized patients and dead, in addition to the total number of cases as well as the number of active cases. The right plots show the corresponding estimates of $ R(t) $. The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 10.  France: The plot shows official data curves for France from Santé Publique France up to May, 31

    Figure 11.  France: The figure shows the reference case (left) and case with an unknown intervention (right). The upper plots show the number of deaths at hospital, hospitalized patients, the total number of cases, and the currently active cases. The lower plots show the ensemble of effective reproduction number $ R(t) $. The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 12.  France: The plot presents forecasts of the reference case with three distinct scenarios after intervention setting the reproduction number to $ R_3 = 0.75,\, 0.85,\, 1.00 $. We have plotted the posterior values for the number of deaths at hospitals (green lines), and the hospitalizations (red lines), together with the first hundred realizations for each case

    Figure 13.  Brazil: The plots illustrate the evolution of SARSCoV-2 in terms of the number of confirmed cases, deaths, and mortality rate (CFR), starting from the day of the first reported death due to COVID-19. The reported states are São Paulo (SP), from the Southeast geopolitical region; Bahia (BA), from the Northeast; Para (PA), North; Rio Grande do Sul (RS), South; and Goiás (GO), Mid West. Each state represents a different evolution of the disease. We have shifted the curves in time to correspond to the first confirmed case.

    Figure 14.  Brazil: The figure shows the simulation of the SARS-CoV-2 evolution in the {São} Paulo Brazilian State. In the left plots, we show a neutral case where the reproductive number $ R(t)\sim 1.0 $ with a standard deviation of $ 0.1 $ for the prediction. The right plots present a stable situation where $ R(t)\sim 0.6 $ with a standard deviation of 0.06, after a second intervention. The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 15.  Brazil: The plots compare simulations considering relative observation errors of 5% and 20%. The upper and lower rows represent a neutral scenario with $ R_3 = 1.0 $. They differ in the standard deviations or $ R(t) $ (0.1 and 0.2). The middle plots show a stable situation with $ R_3 = 0.6 $ and a standard deviation of 0.06, following a second assumed intervention. The left plots show the deaths, and to the right, we present $ R(t) $ using different measurement errors

    Figure 16.  Argentina: The dots are the observations. In Case DC (left plots) both the accumulated deaths and the estimated number of cases were conditioned on, while in Case D (right plots) we only conditioned on the total number of deaths. The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 17.  Argentina: Same as Figure 16 but for an experiment (Exp. 2) focused on a probabilistic prediction in which three scenarios, with different effective reproductive numbers imposed from June 1st, $ R(t) = 1.7 $, 1.3, and 0.9. The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 18.  US: Mobilites for each of the states considered

    Figure 19.  US Case 1: Large uncertainty in $ R(t) $ The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 20.  US Case 2: Assuming voluntary federal guidance was immediately observed by the citizens on March 16th. The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 21.  US Case 3: A gradual step down in $ R(t) $ with the first and intermediate values chosen so that the prior mean closely follows the data until the time for which $ R(t) $ is guessed to be one. The red thin line in the plots for $ R(t) $ is an indication of the value $ R(t) = 1 $ for easier identification

    Figure 22.  US: Forecasts for Case 3: Here we also show the prior forecast mean to highlight the difference between the idealized scenario and after analysis. In this case, only New York was able to achieve a trajectory that predicts fewer deaths than the idealized scenario. Furthermore, New York also is the only state in this study to make an end of the outbreak by late August

    Table 1.  The table gives a set of first-guess model parameters. As we could not find scientific estimates of these parameters, we set their values based on available information from the internet and initial model-tuning experiments. We leave it to the data assimilation system to fine-tune the parameter values

    Parameter First guess Description
    $ \tau_ \rm{inc} $ 5.5 Incubation period
    $ \tau_ \rm{inf} $ 3.8 Infection time
    $ \tau_ \rm{recm} $ 14.0 Recovery time mild cases
    $ \tau_ \rm{recs} $ 5.0 Recovery time severe cases
    $ \tau_ \rm{hosp} $ 6.0 Time until hospitalization
    $ \tau_ \rm{death} $ 16.0 Time until death
    $ p_ \mathrm{f} $ 0.009 Case fatality rate
    $ p_ \mathrm{s} $ 0.039 Hospitalization rate (severe cases)
    $ p_ \mathrm{h} $ 0.4 Fraction of fatally ill going to hospital
     | Show Table
    DownLoad: CSV

    Table 2.  The $ p $ numbers indicate the fraction of sick people in an age group ending up with mild symptoms, severe symptoms (hospitalized), and fatal infection. The population-weighted averages (for the Norwegian population) of the case-fatality rate is 0.0090, and the rate of severe (hospitalized) cases is 0.039

    Age group 1 2 3 4 5 6 7 8 9 10 11
    Age range 0–5 6–12 13–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–105
    Population 351159 451246 446344 711752 730547 723663 703830 582495 435834 185480 45230
    p–mild 1.0000 1.0000 0.9998 0.9913 0.9759 0.9686 0.9369 0.9008 0.8465 0.8183 0.8183
    p–severe 0.0000 0.0000 0.0002 0.0078 0.0232 0.0295 0.0570 0.0823 0.1160 0.1160 0.1160
    p–fatal 0.0000 0.0000 0.0000 0.0009 0.0009 0.0019 0.0061 0.0169 0.0375 0.0656 0.0656
     | Show Table
    DownLoad: CSV

    Table 3.  Norway: This $ \hat{ {\bf{R}}} $-matrix increases transmissions among children after opening kindergartens and schools on April 20th. We chose the numbers ad-hoc to give a qualitative impact of opening kindergartens and schools. To estimate these transmissions' correct values, we will need access to additional data that are not yet available

    Age
    groups 1 2 3 4 5 6 7 8 9 10 11
    1 $\bf 3.3$ 1.8 1.8 1.3 1.3 1.0 0.9 0.9 0.9 0.9 0.9
    2 1.8 $\bf 3.3$ 1.8 1.3 1.3 1.3 0.9 0.9 0.9 0.9 0.9
    3 1.8 1.8 $\bf 0.9$ 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
    4 1.3 1.3 0.9 $\bf 0.9$ 0.9 0.9 0.9 0.9 0.9 0.9 0.9
    5 1.3 1.3 0.9 0.9 $\bf 0.9$ 0.9 0.9 0.9 0.9 0.9 0.9
    6 1.0 1.3 0.9 0.9 0.9 $\bf 0.9$ 0.9 0.9 0.9 0.9 0.9
    7 0.9 0.9 0.9 0.9 0.9 0.9 $\bf 0.9$ 0.9 0.9 0.9 0.9
    8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 $\bf 0.9$ 0.9 0.9 0.9
    9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 $\bf 0.9$ 0.9 0.9
    10 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 $\bf 0.9$ 0.9
    11 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 $\bf 0.9$
     | Show Table
    DownLoad: CSV

    Table 4.  England: The contact matrix $ \hat{ {\bf{R}}}_1 $ used to describe the transmission between different age groups in England before the enforced lockdown on March 23rd. The same contact matrix is used for the prediction from June 1st. See the right panel of Figure 2A in [42] for a heat-map representation of the original matrix

    Age
    groups 1 2 3 4 5 6 7 8 9 10 11
    1 $\bf 2.0$ 1.5 1.5 1.0 1.5 0.5 0.5 0.5 0.4 0.4 0.4
    2 0.5 $\bf 8.0$ 6.0 2.0 2.5 2.5 1.5 1.4 0.9 0.9 0.9
    3 0.5 6.0 $\bf 8.0$ 2.0 2.5 2.5 1.5 1.4 0.9 0.9 0.9
    4 0.5 2.5 2.5 $\bf 6.0$ 2.0 2.0 1.9 1.5 0.9 0.9 0.9
    5 1.2 2.5 2.5 2.0 $\bf 3.0$ 2.0 1.9 1.8 0.5 0.5 0.5
    6 0.5 2.3 2.3 2.0 2.0 $\bf 3.0$ 1.9 1.5 1.4 1.4 1.4
    7 0.5 2.0 2.0 1.5 1.5 1.5 $\bf 2.0$ 1.5 0.9 0.9 0.9
    8 0.5 1.9 1.9 1.0 1.2 1.2 1.9 $\bf 1.5$ 0.9 0.9 0.9
    9 0.5 1.5 1.5 0.9 0.9 1.2 1.0 1.5 $\bf 1.5$ 1.5 1.5
    10 0.4 1.0 1.0 0.9 0.7 1.2 1.0 1.0 1.5 $\bf 1.5$ 1.5
    11 0.4 0.9 0.9 0.9 0.7 1.2 1.0 1.0 1.5 1.5 $\bf 1.5$
     | Show Table
    DownLoad: CSV

    Table 5.  England: The contact matrix $ \hat{ {\bf{R}}}_2 $ used to describe the transmission between different age groups in England during the lockdown from March 23rd to May 31st. See left hand panel of Figurek__ge 2A in [42] for a heat-map representation

    Age
    groups 1 2 3 4 5 6 7 8 9 10 11
    1 $\bf 1.0$ 0.9 0.9 0.8 1.0 0.5 0.5 0.4 0.3 0.3 0.3
    2 0.5 $\bf 2.0$ 1.5 0.9 1.0 1.0 0.5 0.4 0.3 0.3 0.3
    3 0.5 1.5 $\bf 2.0$ 0.9 1.0 1.0 0.5 0.4 0.3 0.3 0.3
    4 0.5 1.0 1.0 $\bf 1.2$ 1.0 1.0 0.9 0.5 0.4 0.3 0.3
    5 0.8 1.0 1.0 0.9 $\bf 1.1$ 0.9 0.9 0.5 0.4 0.3 0.3
    6 0.5 1.0 1.0 1.0 1.0 $\bf 1.1$ 0.9 0.5 0.4 0.3 0.3
    7 0.5 0.6 0.6 0.9 0.9 0.9 $\bf 1.0$ 0.7 0.5 0.5 0.5
    8 0.5 0.6 0.6 0.8 0.9 1.0 1.0 $\bf 1.0$ 0.5 0.5 0.5
    9 0.5 0.6 0.6 0.6 0.5 1.0 0.9 0.9 $\bf 1.1$ 1.1 1.1
    10 0.5 0.6 0.6 0.6 0.5 1.0 0.9 0.9 1.1 $\bf 1.1$ 1.1
    11 0.5 0.6 0.6 0.6 0.5 1.0 0.9 0.9 1.1 1.1 $\bf 1.1$
     | Show Table
    DownLoad: CSV

    Table 6.  England: Prior and posterior mean and standard deviation for the time independent parameters estimated with ESDMA in the experiments D, DH and DHC

    Parameters Prior Posterior D Posterior DH Posterior DHC
    $ I_0 $ 59.97 (6.06) 61.32 (6.01) 61.95 (6.01) 60.08 (5.98)
    $ E_0 $ 240.64 (24.17) 246.68 (23.85) 251.56 (23.62) 239.43 (23.46)
    $ \tau_ \rm{inf} $ 3.80 (0.50) 2.73 (0.33) 3.13 (0.33) 2.83 (0.28)
    $ \tau_ \rm{inc} $ 5.50 (0.50) 4.62 (0.40) 4.79 (0.40) 5.14 (0.33)
    $ \tau_ \rm{recm} $ 13.98 (0.49) 13.99 (0.49) 13.94 (0.49) 13.94 (0.49)
    $ \tau_ \rm{recs} $ 4.99 (0.41) 4.98 (0.40) 4.13 (0.31) 3.57 (0.31)
    $ \tau_ \rm{hosp} $ 5.99 (0.51) 5.54 (0.49) 5.35 (0.48) 4.79 (0.39)
    $ \tau_ \rm{death} $ 15.99 (0.50) 15.64 (0.50) 15.13 (0.47) 14.43 (0.44)
    $ p_ \mathrm{f} $ 0.009 (0.001) 0.009 (0.001) 0.014 (0.0009) 0.014 (0.0002)
    $ p_ \mathrm{s} $ 0.039 (0.004) 0.039 (0.003) 0.011 (0.002) 0.015 (0.002)
     | Show Table
    DownLoad: CSV

    Table 7.  Québec: The set of prior model parameters and their standard deviations (a zero std dev denotes that the parameter is kept fixed). Columns DHC, DH and D show posterior values for, respectively, experiments DHC, DH and D. Note that $ p_{h} $ was supplied externally. The curves for $ R_1 $ and $ R_2 $ are shown in Figure 6

    Parameters Prior(Std Dev) DHC DH D
    $ R_1 $ 3.0(0.6) - - -
    $ R_2 $ 1.0(0.5) - - -
    $ I_0 $ 100.0(20.0) 67 98 96
    $ E_0 $ 240.0(48.0) 167 204 235
    $ \tau_ \rm{inc} $ 5.5(1.0) 5.2 3.4 3.8
    $ \tau_ \rm{inf} $ 3.8(0.6) 1.8 1.9 2.7
    $ \tau_ \rm{recm} $ 14.0(2.0) 14.1 12.8 14.8
    $ \tau_ \rm{recs} $ 5.0(1.0) 6.9 6.8 5.5
    $ \tau_ \rm{hosp} $ 6.0(1.2) 5.9 5.8 6.7
    $ \tau_ \rm{death} $ 10.0(2.0) 5.8 3.4 10.4
    $ p_ \mathrm{f} $ 0.020(0.004) 0.020 0.021 0.023
    $ p_ \mathrm{s} $ 0.039(0.006) 0.040 0.047 0.038
    $ p_{h} $ 0.5(0) - - -
     | Show Table
    DownLoad: CSV

    Table 8.  The Netherlands: The table gives values of the parameters used in Case 1, for the parameters that are different from those indicated in Table 1. The starting date of the simulations is February 20th, 2020

    Parameter First guess Std. Dev. Description
    $ E_0 $ 500.0 50.0 Initially exposed
    $ I_0 $ 400.0 40.0 Initially infectious
    $ R_1 $ 3.8 0.05 Reproduction number before interventions
    (Case 1DH and Case 1DI)
    $ R_1 $ 0.8 0.01 Reproduction number after first nation-wide
    intervention (Case 1DH and Case 1DI)
    $ R_1 $ 1.0 0.75 Reproduction number (Case 2DH)
    $ p_ \mathrm{s} $ 0.010 0.0001 Hospitalization rate
    (Case 1DI)
    $ p_ \mathrm{s} $ 0.039 0.0039 Hospitalization rate
    (Case 1DH, Case 2DH and Case 3DH)
    $ p_ \mathrm{h} $ 0.5 Fraction of fatally ill going to hospital
    (Case 1DI)
    $ p_ \mathrm{h} $ 0.6 Fraction of fatally ill going to hospital
    (Case 1DH, Case 2DH and Case 3DH)
     | Show Table
    DownLoad: CSV

    Table 9.  The Netherlands: overview of cases

    Case Assimilated data Description
    1DI deaths, ICU patients prior $ R(t) $ equals 3.8 before intervention, 0.8 after
    1DH deaths, hospitalized prior $ R(t) $ equals 3.8 before intervention, 0.8 after
    2DH deaths, hospitalized prior $ R(t) $ equals 1.0
    3DH deaths, hospitalized prior $ R(t) $ equals 1.8 at start of simulation
    and gradually ramps down to 0.8
     | Show Table
    DownLoad: CSV

    Table 10.  France: The table gives a set of "calibrated" first-guess (i.e., prior) model parameters and their standard deviations used for France. $ p_{\mathrm h} $ is set ot $ 1 $ to inform the model that care homes deaths are excluded from the death numbers. All other parameter settings are unchanged as compared to the ones given in Table 1

    Parameter First guess Std. Dev. Description
    $ t_0 $ February 16th - Start date of simulation
    $ t_1 $ March 17th - Start date of intervention
    $ t_2 $ May 11th - End of lockdown
    $ R_1 $ 3.5 0.20 $ R(t) $ prior before intervention
    $ R_2 $ 0.65 0.20 $ R(t) $ prior during lockdown
    $ R_3 $ 0.85 0.20 $ R(t) $ prior after full lockdown
    $ E_0 $ 500 500 Initial Exposed
    $ I_0 $ 200 200 Initial Infectious
    $ \tau_ \rm{recs} $ 20 2 Recovery time severe cases
    $ \tau_ \rm{hosp} $ 6 0.5 Time until hospitalization
    $ \tau_ \rm{death} $ 7 1 Time until death
    $ p_ \mathrm{f} $ 0.02 0.02 Case fatality rate
    $ p_ \mathrm{s} $ 0.039 0.03 Hospitalization rate for severe cases
    $ p_{\mathrm h} $ $ 1 $ - Fraction of $ {\bf Q}_\mathrm{f} $ that go to hospital
     | Show Table
    DownLoad: CSV

    Table 11.  Brazil: The table gives the parameter values used in the SARS-CoV-2 simulations for São Paulo, Brazil. All other parameters were kept unchanged as compared to the ones given in Table \protect1

    Parameter Initial value Std dev
    $ t_0 $ March 10th - Start date of simulation
    $ t_1 $ March 23rd - Start date of interventions
    $ t_2 $ June 1st - Start date of prediction
    $ E_0 $ 656.0 65.6 Initial Exposed
    $ I_0 $ 164.0 16.4 Initial Infectious
    $ R_1 $ 4.0 0.4 Prior $ R(t) $ during spinup
    $ R_2 $ 1.0 0.1 Prior $ R(t) $ during interventions
    $ R_3 $ 1.0 0.1 Prior $ R(t) $ in prediction phase
    $ p_ \mathrm{h} $ 0.2 - Ratio of fatally sick hospitalised
    $ p_ \mathrm{f} $ 0.065 0.0065 Case fatality rate (CFR)
     | Show Table
    DownLoad: CSV

    Table 12.  US: The parameters used in our experiments, the different values for the reproductive number at intervention steps are described in the sections for each case. Values without state indications are the same for all states. Any parameters not listed are the same as in Tab 1

    Param Prior Std. Dev. Description
    $ T_s $ 20/2-2020 - Start Date
    $ E_0 $ 50(NY, CA), 10(AL), 20(NC) 10(NY, CA, NC), 2.0(AL) Initial Exposed
    $ I_0 $ 10(NY, CA), 1(AL), 2(NC) 5(NY, CA, NC), 1.0(AL) Initial infectious
    $ p_ \mathrm{f} $ 0.18(NY), 0.009(CA, NC, AL) 0.001 CFR
     | Show Table
    DownLoad: CSV
  • [1] S. I. AanonsenG. NævdalD. S. OliverA. C. Reynolds and B. Vallès, Ensemble Kalman filter in reservoir engineering – A review, SPE Journal, 14 (2009), 393-412.  doi: 10.2118/117274-PA.
    [2] S. AbramsThe analysis of multivariate serological data, in Handbook of Infectious Disease Data Analysis, CRC Press, 2019. 
    [3] J. L. Anderson and S. L. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127 (1999), 2741-2758.  doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.
    [4] E. Armstrong, M. Runge and J. Gerardin, Identifying the measurements required to estimate rates of COVID-19 transmission, infection, and detection, using variational data assimilation, Infectious Disease Modelling, to appear. doi: 10.1101/2020.05.27.20112987.
    [5] M. Asch, M. Bocquet and M. Nodet, Data Assimilation. Methods, Algorithms, and Applications, Fundamentals of Algorithms, 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974546.pt1.
    [6] L. M. A. Bettencourt, R. M. Ribeiro, G. Chowell, T. Lant and C. Castillo-Chavez, Towards real time epidemiology: Data assimilation, modeling and anomaly detection of health surveillance data streams, in Intelligence and Security Informatics: Biosurveillance, Lecture Notes in Computer Science, 4506, Springer, 2007, 79–90. doi: 10.1007/978-3-540-72608-1_8.
    [7] J. C. Blackwood and L. M. Childs, An introduction to compartmental modeling for the budding infectious disease modeler, Lett. Biomath., 5 (2018), 195-221.  doi: 10.30707/LiB5.1Blackwood.
    [8] M. Bocquet and P. Sakov, An iterative ensemble Kalman smoother, Q. J. R. Meteorol. Soc., 140 (2014), 1521-1535. 
    [9] M. Bocquet and P. Sakov, Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20 (2013), 803-818.  doi: 10.5194/npg-20-803-2013.
    [10] C. {B}rasil, Estimativa de Casos de COVID-19, 2020. Available from: https://ciis.fmrp.usp.br/covid19-subnotificacao/.
    [11] R. BuizzaM. Milleer and T. N. Palmer, Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Q. J. R. Meteorol. Soc., 125 (1999), 2887-2908.  doi: 10.1002/qj.49712556006.
    [12] G. BurgersP. J. van Leeuwen and G. Evensen, Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126 (1998), 1719-1724.  doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.
    [13] H. Cao and Y. Zhou, The discrete age-structured SEIT model with application to tuberculosis transmission in China, Math. Comput. Modelling, 55 (2012), 385-395.  doi: 10.1016/j.mcm.2011.08.017.
    [14] A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Data assimilation in the Geosciences: An overview on methods, issues and perspectives, WIREs Climate Change, 9 (2018), 50pp. doi: 10.1002/wcc.535.
    [15] CBS, Bevolkingspyramide, Statistics Netherlands (CBS), 2020. Available from: https://www.cbs.nl/nl-nl/visualisaties/bevolkingspiramide.
    [16] CBS, Nearly 9 Thousand More Deaths in First 9 Weeks of COVID-19, Statistics Netherlands (CBS), 2020. Available from: https://www.cbs.nl/en-gb/news/2020/20/nearly-9-thousand-more-deaths-in-first-9-weeks-of-covid-19.
    [17] N. K. Chada, M. A. Iglesias, L. Roininen and A. M. Stuart, Parameterizations for ensemble Kalman inversion, Inverse Problems, 34 (2018), 31pp. doi: 10.1088/1361-6420/aab6d9.
    [18] Y. Chen and D. S. Oliver, Ensemble randomized maximum likelihood method as an iterative ensemble smoother, Math. Geosci., 44 (2012), 1-26.  doi: 10.1007/s11004-011-9376-z.
    [19] Y. Chen and D. S. Oliver, Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification, Comput. Geosci., 17 (2013), 689-703.  doi: 10.1007/s10596-013-9351-5.
    [20] COVID-19 in Brazil: "So what?", The Lancet, 395 (2020). doi: 10.1016/S0140-6736(20)31095-3.
    [21] A. A. Emerick and A. C. Reynolds, Ensemble smoother with multiple data assimilation, Comput. Geosci., 55 (2013), 3-15.  doi: 10.1016/j.cageo.2012.03.011.
    [22] R. Engbert, M. M. Rabe, R. Kliegl and S. Reich, Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics, Bull. Math. Biol., 83 (2021). doi: 10.1007/s11538-020-00834-8.
    [23] G. Evensen, Accounting for model errors in iterative ensemble smoothers, Comput. Geosci., 23 (2019), 761-775.  doi: 10.1007/s10596-019-9819-z.
    [24] G. Evensen, Analysis of iterative ensemble smoothers for solving inverse problems, Comput. Geosci., 22 (2018), 885-908.  doi: 10.1007/s10596-018-9731-y.
    [25] G. Evensen, Data Assimilation. The Ensemble Kalman Filter, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-03711-5.
    [26] G. Evensen, The ensemble Kalman filter for combined state and parameter estimation: Monte Carlo techniques for data assimilation in large systems, IEEE Control Syst. Mag., 29 (2009), 83-104.  doi: 10.1109/MCS.2009.932223.
    [27] G. Evensen, Formulating the history matching problem with consistent error statistics, Comput. Geosci., to appear.
    [28] G. Evensen, Sampling strategies and square root analysis schemes for the EnKF, Ocean Dynamics, 54 (2004), 539-560.  doi: 10.1007/s10236-004-0099-2.
    [29] G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99 (1994). doi: 10.1029/94JC00572.
    [30] G. Evensen, P. N. Raanes, A. S. Stordal and J. Hove, Efficient implementation of an iterative ensemble smoother for data assimilation and reservoir history matching, Front. Appl. Math. Stat., 5 (2019), 47pp. doi: 10.3389/fams.2019.00047.
    [31] S. Flaxman, S. Mishra, A. Gandy, H. Unwin and H. Coupland, et al., Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries, 2020. Available from: https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-13-europe-npi-impact/.
    [32] Gouvernement de la République Française, COVID-19: Carte et Données, 2020. Available from: https://www.gouvernement.fr/info-coronavirus/carte-et-donnees.
    [33] H. Gupta, K. K. Verma and P. Sharma, Using data assimilation technique and epidemic model to predict TB epidemic, Internat. J. Comput. Appl., 128 (2015), 5pp. doi: 10.5120/ijca2015906625.
    [34] P. L. Houtekamer and H. L. Mitchell, Data assimilation using an ensemble Kalman filter technique, Mon. Weather Rev., 126 (1998), 796-811.  doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.
    [35] P. L. Houtekamer and F. Zhang, Review of the ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 144 (2016), 4489-4532.  doi: 10.1175/MWR-D-15-0440.1.
    [36] M. A. Iglesias, K. J. Law and A. M. Stuart, Ensemble Kalman methods for inverse problems, Inverse Problems, 29 (2013), 20pp. doi: 10.1088/0266-5611/29/4/045001.
    [37] Imperial College COVID-19 Response Team, Short-term forecasts of COVID-19 deaths in multiple countries, 2020. Available from: https://mrc-ide.github.io/covid19-short-term-forecasts/index.html.
    [38] A. J. IngC. Cocks and J. P. Green, COVID-19: In the footsteps of Ernest Shackleton, Thorax, 75 (2020), 613-613.  doi: 10.1136/thoraxjnl-2020-215091.
    [39] Institut de la Statistique Québec, 2020. Available from: https://www.stat.gouv.qc.ca/statistiques/population-demographie/deces-mortalite/nombre-hebdomadaire-deces.html.,
    [40] Institut de la Statistique Québec: Population Data, 2019. Available from: https://www.stat.gouv.qc.ca/statistiques/population-demographie/structure/population-quebec-age-sexe.html#tri_pop=20.,
    [41] Institut National de Santé Publique Québec, 2020. Available from: https://www.inspq.qc.ca/covid-19/donnees.,
    [42] C. Jarvis, K. Van Zandvoort and A. Gimma, et al., Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK, BMC Med, 18 (2020), 1416-1430. doi: 10.1186/s12916-020-01597-8.
    [43] M. A. Jorden, S. L. Rudman, E. Villarino, S. Hoferka and M. T. Patel, et al., Evidence for limited early spread of COVID-19 within the United States, January-February 2020, Morbid. Mortal. Weekly Rep. (MMWR), 69 (2020), 680-684, doi: 10.15585/mmwr.mm6922e1.
    [44] A. A. KingE. L. IonidesM. Pascual and M. J. Bouma, Inapparent infections and cholera dynamics, Nature, 454 (2008), 877-880.  doi: 10.1038/nature07084.
    [45] R. LiS. PeiB. ChenY. SongT. ZhangW. Yang and J. Shaman, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2), Science, 368 (2020), 489-493.  doi: 10.1126/science.abb3221.
    [46] T. A. Mellan, H. H. Hoeltgebaum, S. Mishra, C. Whittaker and R. Schnekenberg, et al., Report 21: Estimating COVID-19 cases and reproduction number in Brazil, (2020). doi: 10.25561/78872.
    [47] J. Mossong, N. Hens, M. Jit, P. Beutels and K. Auranen, et al., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med, 5. doi: 10.1371/journal.pmed.0050074.
    [48] C. J. L. Murray, Forecasting the impact of the first wave of the COVID-19 pandemic on hospital demand and deaths for the USA and European economic area countries, preprint. doi: 10.1101/2020.04.21.20074732.
    [49] National Health Service, Covid-19 Daily Deaths, 2020. Available from: https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths/.
    [50] R. M. Neal, Sampling from multimodal distributions using tempered transitions, Statist. Comput., 6 (1996), 353-366.  doi: 10.1007/BF00143556.
    [51] NICE, COVID-19 Infecties op de IC's, Nationale Intensive Care Evaluatie, 2020. Accessed from: https://www.stichting-nice.nl/.
    [52] NICE, COVID-19 Infecties op de Verpleegadeling, Nationale Intensive Care Evaluatie, 2020. Available from: https://www.stichting-nice.nl/covid-19-op-de-zkh.jsp/
    [53] D. PasettoF. FingerA. Rinaldo and E. Bertuzzo, Real-time projections of cholera outbreaks through data assimilation and rainfall forecasting, Adv. Water Res., 108 (2017), 345-356.  doi: 10.1016/j.advwatres.2016.10.004.
    [54] Public Health, England, The health protection (coronavirus, business closure) (England) regulations 2020, 2020. Available from: https://web.archive.org/web/20200323004800/http://www.legislation.gov.uk/uksi/2020/327/pdfs/uksi_20200327_en.pdf.
    [55] P. N. RaanesA. S. Stordal and G. Evensen, Revising the stochastic iterative ensemble smoother, Nonlin. Processes Geophys, 26 (2019), 325-338.  doi: 10.5194/npg-26-325-2019.
    [56] Registro Civil, Portal da Transparencia - Especial COVID-19, 2020. Available from: https://transparencia.registrocivil.org.br/especial-covid.
    [57] C. J. Rhodes and T. D. Hollingsworth, Variational data assimilation with epidemic models, J. Theoret. Biol., 258 (2009), 591-602.  doi: 10.1016/j.jtbi.2009.02.017.
    [58] RIVM, Briefing Update Coronavirus Tweede Kamer 20 Mei 2020, National Institute for Public Health and the Environment, 2020. Available from: https://www.tweedekamer.nl/sites/default/files/atoms/files/presentatie_jaap_van_dissel_-_technische_briefing_20_mei_2020.pdf.
    [59] RIVM, Excess Mortality Caused by the Novel Coronavirus (COVID-19), National Institute for Public Health and the Environment, 2020. Available from: https://www.rivm.nl/node/155011.
    [60] RIVM, Ontwikkeling COVID-19 in Grafieken, National Institute for Public Health and the Environment, 2020. Available from: https://www.rivm.nl/coronavirus-covid-19/grafieken.
    [61] H. Salje, C. Tran Kiem, N. Lefrancq, N. Courtejoie and P. Bosetti, et al., Estimating the burden of SARS-CoV-2 in France, Science, 369 (2020), 208-211. doi: 10.1126/science.abc3517.
    [62] J. L. Sesterhenn, Adjoint-based data assimilation of an epidemiology model for the COVID-19 pandemic in 2020, preprint, arXiv: 2003.13071.
    [63] J. ShamanA. KarspeckW. YangJ. Tamerius and M. Lipsitch, Real-time influenza forecasts during the 2012–2013 season, Nature Commu., 4 (2013), 1-10.  doi: 10.1038/ncomms3837.
    [64] A. S. Stordal and A. H. Elsheikh, Iterative ensemble smoothers in the annealed importance sampling framework, Adv. Water Res., 86 (2015), 231-239.  doi: 10.1016/j.advwatres.2015.09.030.
    [65] UK Government, Coronavirus (COVID-19) in the UK, 2020. Available from: https://coronavirus.data.gov.uk.
    [66] UK Government, National COVID-19 Surveillance Reports, 2020. Available from: https://www.gov.uk/government/publications/national-covid-19-surveillance-reports/.
    [67] UK Government, Slides, Datasets and Transcripts to Accompany Coronavirus Press Conferences, 2020. Available from: https://www.gov.uk/government/collections/slides-and-datasets-to-accompany-coronavirus-press-conferences/.
    [68] UK Office for National Statistics, Dataset: Deaths Registered Weekly in England and Wales, Provisional, 2020., Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/weeklyprovisionalfiguresondeathsregisteredinenglandandwales.
    [69] J. van Wees, S. Osinga, M. van der Kuip, M. Tanck and M. Hanegraaf, et al., Forecasting hospitalization and ICU rates of the COVID-19 outbreak: An efficient SEIR model, Bull. World Health Org., (2020). doi: 10.2471/BLT.20.256743.
    [70] J. S. Whitaker and T. M. Hamill, Evaluating methods to account for system errors in ensemble data assimilation, Mon. Weather. Rev., 140 (2012), 3078-3089.  doi: 10.1175/MWR-D-11-00276.1.
    [71] WHO, Coronavirus Disease (COVID-19): Similarities and Differences with Influenza, 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza.
    [72] W. YangM. Lipsitch and J. Shaman, Inference of seasonal and pandemic influenza transmission dynamics, PNAS, 112 (2015), 2723-2728.  doi: 10.1073/pnas.1415012112.
    [73] W. Yang, W. Zhang, D. Kargbo, R. Yang and Y. Chen, et al., Transmission network of the 2014–2015 Ebola epidemic in Sierra Leone, J. Roy. Soc. Interface, 12 (2015). doi: 10.1098/rsif.2015.0536.
  • 加载中
Open Access Under a Creative Commons license

Figures(22)

Tables(12)

SHARE

Article Metrics

HTML views(5528) PDF downloads(756) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return