[1]
|
S. I. Aanonsen, G. Nævdal, D. S. Oliver, A. C. Reynolds and B. Vallès, Ensemble Kalman filter in reservoir engineering – A review, SPE Journal, 14 (2009), 393-412.
doi: 10.2118/117274-PA.
|
[2]
|
S. Abrams, The analysis of multivariate serological data, in Handbook of Infectious Disease Data Analysis, CRC Press, 2019.
|
[3]
|
J. L. Anderson and S. L. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127 (1999), 2741-2758.
doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.
|
[4]
|
E. Armstrong, M. Runge and J. Gerardin, Identifying the measurements required to estimate rates of COVID-19 transmission, infection, and detection, using variational data assimilation, Infectious Disease Modelling, to appear.
doi: 10.1101/2020.05.27.20112987.
|
[5]
|
M. Asch, M. Bocquet and M. Nodet, Data Assimilation. Methods, Algorithms, and Applications, Fundamentals of Algorithms, 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016.
doi: 10.1137/1.9781611974546.pt1.
|
[6]
|
L. M. A. Bettencourt, R. M. Ribeiro, G. Chowell, T. Lant and C. Castillo-Chavez, Towards real time epidemiology: Data assimilation, modeling and anomaly detection of health surveillance data streams, in Intelligence and Security Informatics: Biosurveillance, Lecture Notes in Computer Science, 4506, Springer, 2007, 79–90.
doi: 10.1007/978-3-540-72608-1_8.
|
[7]
|
J. C. Blackwood and L. M. Childs, An introduction to compartmental modeling for the budding infectious disease modeler, Lett. Biomath., 5 (2018), 195-221.
doi: 10.30707/LiB5.1Blackwood.
|
[8]
|
M. Bocquet and P. Sakov, An iterative ensemble Kalman smoother, Q. J. R. Meteorol. Soc., 140 (2014), 1521-1535.
|
[9]
|
M. Bocquet and P. Sakov, Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20 (2013), 803-818.
doi: 10.5194/npg-20-803-2013.
|
[10]
|
C. {B}rasil, Estimativa de Casos de COVID-19, 2020. Available from: https://ciis.fmrp.usp.br/covid19-subnotificacao/.
|
[11]
|
R. Buizza, M. Milleer and T. N. Palmer, Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Q. J. R. Meteorol. Soc., 125 (1999), 2887-2908.
doi: 10.1002/qj.49712556006.
|
[12]
|
G. Burgers, P. J. van Leeuwen and G. Evensen, Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126 (1998), 1719-1724.
doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.
|
[13]
|
H. Cao and Y. Zhou, The discrete age-structured SEIT model with application to tuberculosis transmission in China, Math. Comput. Modelling, 55 (2012), 385-395.
doi: 10.1016/j.mcm.2011.08.017.
|
[14]
|
A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Data assimilation in the Geosciences: An overview on methods, issues and perspectives, WIREs Climate Change, 9 (2018), 50pp.
doi: 10.1002/wcc.535.
|
[15]
|
CBS, Bevolkingspyramide, Statistics Netherlands (CBS), 2020. Available from: https://www.cbs.nl/nl-nl/visualisaties/bevolkingspiramide.
|
[16]
|
CBS, Nearly 9 Thousand More Deaths in First 9 Weeks of COVID-19, Statistics Netherlands (CBS), 2020. Available from: https://www.cbs.nl/en-gb/news/2020/20/nearly-9-thousand-more-deaths-in-first-9-weeks-of-covid-19.
|
[17]
|
N. K. Chada, M. A. Iglesias, L. Roininen and A. M. Stuart, Parameterizations for ensemble Kalman inversion, Inverse Problems, 34 (2018), 31pp.
doi: 10.1088/1361-6420/aab6d9.
|
[18]
|
Y. Chen and D. S. Oliver, Ensemble randomized maximum likelihood method as an iterative ensemble smoother, Math. Geosci., 44 (2012), 1-26.
doi: 10.1007/s11004-011-9376-z.
|
[19]
|
Y. Chen and D. S. Oliver, Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification, Comput. Geosci., 17 (2013), 689-703.
doi: 10.1007/s10596-013-9351-5.
|
[20]
|
COVID-19 in Brazil: "So what?", The Lancet, 395 (2020).
doi: 10.1016/S0140-6736(20)31095-3.
|
[21]
|
A. A. Emerick and A. C. Reynolds, Ensemble smoother with multiple data assimilation, Comput. Geosci., 55 (2013), 3-15.
doi: 10.1016/j.cageo.2012.03.011.
|
[22]
|
R. Engbert, M. M. Rabe, R. Kliegl and S. Reich, Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics, Bull. Math. Biol., 83 (2021).
doi: 10.1007/s11538-020-00834-8.
|
[23]
|
G. Evensen, Accounting for model errors in iterative ensemble smoothers, Comput. Geosci., 23 (2019), 761-775.
doi: 10.1007/s10596-019-9819-z.
|
[24]
|
G. Evensen, Analysis of iterative ensemble smoothers for solving inverse problems, Comput. Geosci., 22 (2018), 885-908.
doi: 10.1007/s10596-018-9731-y.
|
[25]
|
G. Evensen, Data Assimilation. The Ensemble Kalman Filter, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-03711-5.
|
[26]
|
G. Evensen, The ensemble Kalman filter for combined state and parameter estimation: Monte Carlo techniques for data assimilation in large systems, IEEE Control Syst. Mag., 29 (2009), 83-104.
doi: 10.1109/MCS.2009.932223.
|
[27]
|
G. Evensen, Formulating the history matching problem with consistent error statistics, Comput. Geosci., to appear.
|
[28]
|
G. Evensen, Sampling strategies and square root analysis schemes for the EnKF, Ocean Dynamics, 54 (2004), 539-560.
doi: 10.1007/s10236-004-0099-2.
|
[29]
|
G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99 (1994).
doi: 10.1029/94JC00572.
|
[30]
|
G. Evensen, P. N. Raanes, A. S. Stordal and J. Hove, Efficient implementation of an iterative ensemble smoother for data assimilation and reservoir history matching, Front. Appl. Math. Stat., 5 (2019), 47pp.
doi: 10.3389/fams.2019.00047.
|
[31]
|
S. Flaxman, S. Mishra, A. Gandy, H. Unwin and H. Coupland, et al., Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries, 2020. Available from: https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-13-europe-npi-impact/.
|
[32]
|
Gouvernement de la République Française, COVID-19: Carte et Données, 2020. Available from: https://www.gouvernement.fr/info-coronavirus/carte-et-donnees.
|
[33]
|
H. Gupta, K. K. Verma and P. Sharma, Using data assimilation technique and epidemic model to predict TB epidemic, Internat. J. Comput. Appl., 128 (2015), 5pp.
doi: 10.5120/ijca2015906625.
|
[34]
|
P. L. Houtekamer and H. L. Mitchell, Data assimilation using an ensemble Kalman filter technique, Mon. Weather Rev., 126 (1998), 796-811.
doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.
|
[35]
|
P. L. Houtekamer and F. Zhang, Review of the ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 144 (2016), 4489-4532.
doi: 10.1175/MWR-D-15-0440.1.
|
[36]
|
M. A. Iglesias, K. J. Law and A. M. Stuart, Ensemble Kalman methods for inverse problems, Inverse Problems, 29 (2013), 20pp.
doi: 10.1088/0266-5611/29/4/045001.
|
[37]
|
Imperial College COVID-19 Response Team, Short-term forecasts of COVID-19 deaths in multiple countries, 2020. Available from: https://mrc-ide.github.io/covid19-short-term-forecasts/index.html.
|
[38]
|
A. J. Ing, C. Cocks and J. P. Green, COVID-19: In the footsteps of Ernest Shackleton, Thorax, 75 (2020), 613-613.
doi: 10.1136/thoraxjnl-2020-215091.
|
[39]
|
Institut de la Statistique Québec, 2020. Available from: https://www.stat.gouv.qc.ca/statistiques/population-demographie/deces-mortalite/nombre-hebdomadaire-deces.html.,
|
[40]
|
Institut de la Statistique Québec: Population Data, 2019. Available from: https://www.stat.gouv.qc.ca/statistiques/population-demographie/structure/population-quebec-age-sexe.html#tri_pop=20.,
|
[41]
|
Institut National de Santé Publique Québec, 2020. Available from: https://www.inspq.qc.ca/covid-19/donnees.,
|
[42]
|
C. Jarvis, K. Van Zandvoort and A. Gimma, et al., Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK, BMC Med, 18 (2020), 1416-1430.
doi: 10.1186/s12916-020-01597-8.
|
[43]
|
M. A. Jorden, S. L. Rudman, E. Villarino, S. Hoferka and M. T. Patel, et al., Evidence for limited early spread of COVID-19 within the United States, January-February 2020, Morbid. Mortal. Weekly Rep. (MMWR), 69 (2020), 680-684,
doi: 10.15585/mmwr.mm6922e1.
|
[44]
|
A. A. King, E. L. Ionides, M. Pascual and M. J. Bouma, Inapparent infections and cholera dynamics, Nature, 454 (2008), 877-880.
doi: 10.1038/nature07084.
|
[45]
|
R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang and J. Shaman, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2), Science, 368 (2020), 489-493.
doi: 10.1126/science.abb3221.
|
[46]
|
T. A. Mellan, H. H. Hoeltgebaum, S. Mishra, C. Whittaker and R. Schnekenberg, et al., Report 21: Estimating COVID-19 cases and reproduction number in Brazil, (2020).
doi: 10.25561/78872.
|
[47]
|
J. Mossong, N. Hens, M. Jit, P. Beutels and K. Auranen, et al., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med, 5.
doi: 10.1371/journal.pmed.0050074.
|
[48]
|
C. J. L. Murray, Forecasting the impact of the first wave of the COVID-19 pandemic on hospital demand and deaths for the USA and European economic area countries, preprint.
doi: 10.1101/2020.04.21.20074732.
|
[49]
|
National Health Service, Covid-19 Daily Deaths, 2020. Available from: https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths/.
|
[50]
|
R. M. Neal, Sampling from multimodal distributions using tempered transitions, Statist. Comput., 6 (1996), 353-366.
doi: 10.1007/BF00143556.
|
[51]
|
NICE, COVID-19 Infecties op de IC's, Nationale Intensive Care Evaluatie, 2020. Accessed from: https://www.stichting-nice.nl/.
|
[52]
|
NICE, COVID-19 Infecties op de Verpleegadeling, Nationale Intensive Care Evaluatie, 2020. Available from: https://www.stichting-nice.nl/covid-19-op-de-zkh.jsp/
|
[53]
|
D. Pasetto, F. Finger, A. Rinaldo and E. Bertuzzo, Real-time projections of cholera outbreaks through data assimilation and rainfall forecasting, Adv. Water Res., 108 (2017), 345-356.
doi: 10.1016/j.advwatres.2016.10.004.
|
[54]
|
Public Health, England, The health protection (coronavirus, business closure) (England) regulations 2020, 2020. Available from: https://web.archive.org/web/20200323004800/http://www.legislation.gov.uk/uksi/2020/327/pdfs/uksi_20200327_en.pdf.
|
[55]
|
P. N. Raanes, A. S. Stordal and G. Evensen, Revising the stochastic iterative ensemble smoother, Nonlin. Processes Geophys, 26 (2019), 325-338.
doi: 10.5194/npg-26-325-2019.
|
[56]
|
Registro Civil, Portal da Transparencia - Especial COVID-19, 2020. Available from: https://transparencia.registrocivil.org.br/especial-covid.
|
[57]
|
C. J. Rhodes and T. D. Hollingsworth, Variational data assimilation with epidemic models, J. Theoret. Biol., 258 (2009), 591-602.
doi: 10.1016/j.jtbi.2009.02.017.
|
[58]
|
RIVM, Briefing Update Coronavirus Tweede Kamer 20 Mei 2020, National Institute for Public Health and the Environment, 2020. Available from: https://www.tweedekamer.nl/sites/default/files/atoms/files/presentatie_jaap_van_dissel_-_technische_briefing_20_mei_2020.pdf.
|
[59]
|
RIVM, Excess Mortality Caused by the Novel Coronavirus (COVID-19), National Institute for Public Health and the Environment, 2020. Available from: https://www.rivm.nl/node/155011.
|
[60]
|
RIVM, Ontwikkeling COVID-19 in Grafieken, National Institute for Public Health and the Environment, 2020. Available from: https://www.rivm.nl/coronavirus-covid-19/grafieken.
|
[61]
|
H. Salje, C. Tran Kiem, N. Lefrancq, N. Courtejoie and P. Bosetti, et al., Estimating the burden of SARS-CoV-2 in France, Science, 369 (2020), 208-211.
doi: 10.1126/science.abc3517.
|
[62]
|
J. L. Sesterhenn, Adjoint-based data assimilation of an epidemiology model for the COVID-19 pandemic in 2020, preprint, arXiv: 2003.13071.
|
[63]
|
J. Shaman, A. Karspeck, W. Yang, J. Tamerius and M. Lipsitch, Real-time influenza forecasts during the 2012–2013 season, Nature Commu., 4 (2013), 1-10.
doi: 10.1038/ncomms3837.
|
[64]
|
A. S. Stordal and A. H. Elsheikh, Iterative ensemble smoothers in the annealed importance sampling framework, Adv. Water Res., 86 (2015), 231-239.
doi: 10.1016/j.advwatres.2015.09.030.
|
[65]
|
UK Government, Coronavirus (COVID-19) in the UK, 2020. Available from: https://coronavirus.data.gov.uk.
|
[66]
|
UK Government, National COVID-19 Surveillance Reports, 2020. Available from: https://www.gov.uk/government/publications/national-covid-19-surveillance-reports/.
|
[67]
|
UK Government, Slides, Datasets and Transcripts to Accompany Coronavirus Press Conferences, 2020. Available from: https://www.gov.uk/government/collections/slides-and-datasets-to-accompany-coronavirus-press-conferences/.
|
[68]
|
UK Office for National Statistics, Dataset: Deaths Registered Weekly in England and Wales, Provisional, 2020., Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/weeklyprovisionalfiguresondeathsregisteredinenglandandwales.
|
[69]
|
J. van Wees, S. Osinga, M. van der Kuip, M. Tanck and M. Hanegraaf, et al., Forecasting hospitalization and ICU rates of the COVID-19 outbreak: An efficient SEIR model, Bull. World Health Org., (2020).
doi: 10.2471/BLT.20.256743.
|
[70]
|
J. S. Whitaker and T. M. Hamill, Evaluating methods to account for system errors in ensemble data assimilation, Mon. Weather. Rev., 140 (2012), 3078-3089.
doi: 10.1175/MWR-D-11-00276.1.
|
[71]
|
WHO, Coronavirus Disease (COVID-19): Similarities and Differences with Influenza, 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza.
|
[72]
|
W. Yang, M. Lipsitch and J. Shaman, Inference of seasonal and pandemic influenza transmission dynamics, PNAS, 112 (2015), 2723-2728.
doi: 10.1073/pnas.1415012112.
|
[73]
|
W. Yang, W. Zhang, D. Kargbo, R. Yang and Y. Chen, et al., Transmission network of the 2014–2015 Ebola epidemic in Sierra Leone, J. Roy. Soc. Interface, 12 (2015).
doi: 10.1098/rsif.2015.0536.
|