
Previous Article
Learning landmark geodesics using the ensemble Kalman filter
 FoDS Home
 This Issue

Next Article
A surrogatebased approach to nonlinear, nonGaussian joint stateparameter data assimilation
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Intrinsic disease maps using persistent cohomology
1.  CUNY Graduate Center, 365 5th Avenue, New York, NY 10016 
2.  Department of Mathematics, CUNY College of Staten Island, 2800 Victory Boulevard, Staten Island, NY 10314 
We use persistent cohomology and circular coordinates to investigate three datasets related to infectious diseases. We show that all three datasets exhibit circular coordinates that carry information about the data itself. For one of the datasets we are able to recover time post infection from the circular coordinate itself – for the other datasets, this information was not available, but in one we were able to relate the circular coordinate to red blood cell counts and weight changes in the subjects.
References:
[1] 
K. Cumnock, A. S. Gupta, M. Lissner, V. Chevee, N. M. Davis and D. S. Schneider, Host energy source is important for disease tolerance to malaria, Current Biology, 28 (2018), 16351642. doi: 10.1016/j.cub.2018.04.009. Google Scholar 
[2] 
V. de Silva, D. Morozov and M. VejdemoJohansson, Persistent cohomology and circular coordinates, Discrete Comput. Geom., 45 (2011), 737759. doi: 10.1007/s004540119344x. Google Scholar 
[3] 
F. Pedregosa, G. Varoquaux, A. Gramfort and al. et, Scikitlearn: Machine learning in {P}ython, J. Mach. Learn. Res., 12 (2011), 28252830. Google Scholar 
[4] 
B. R. Rosenberg, M. Depla, C. A. Freije, D. Gaucher and S. Mazouz, et al., Longitudinal transcriptomic characterization of the immune response to acute hepatitis c virus infection in patients with spontaneous viral clearance, PLoS Pathogens, 14 (2018). doi: 10.1371/journal. ppat. 1007290. Google Scholar 
[5] 
B. Y. Torres, J. H. M. Oliveira, A. T. Tate, P. Rath, K. Cumnock and D. S. Schneider, Tracking resilience to infections by mapping disease space, PLoS biology, 14 (2016). doi: 10.1371/journal. pbio. 1002436. Google Scholar 
[6] 
M. VejdemoJohansson and A. Leshchenko, Certified mapper: Repeated testing for acyclicity and obstructions to the nerve lemma, in Topological Data Analysis, Abel Symposia, 15, Springer, Cham, 2020, 491–515. doi: 10.1007/9783030434083_19. Google Scholar 
show all references
References:
[1] 
K. Cumnock, A. S. Gupta, M. Lissner, V. Chevee, N. M. Davis and D. S. Schneider, Host energy source is important for disease tolerance to malaria, Current Biology, 28 (2018), 16351642. doi: 10.1016/j.cub.2018.04.009. Google Scholar 
[2] 
V. de Silva, D. Morozov and M. VejdemoJohansson, Persistent cohomology and circular coordinates, Discrete Comput. Geom., 45 (2011), 737759. doi: 10.1007/s004540119344x. Google Scholar 
[3] 
F. Pedregosa, G. Varoquaux, A. Gramfort and al. et, Scikitlearn: Machine learning in {P}ython, J. Mach. Learn. Res., 12 (2011), 28252830. Google Scholar 
[4] 
B. R. Rosenberg, M. Depla, C. A. Freije, D. Gaucher and S. Mazouz, et al., Longitudinal transcriptomic characterization of the immune response to acute hepatitis c virus infection in patients with spontaneous viral clearance, PLoS Pathogens, 14 (2018). doi: 10.1371/journal. ppat. 1007290. Google Scholar 
[5] 
B. Y. Torres, J. H. M. Oliveira, A. T. Tate, P. Rath, K. Cumnock and D. S. Schneider, Tracking resilience to infections by mapping disease space, PLoS biology, 14 (2016). doi: 10.1371/journal. pbio. 1002436. Google Scholar 
[6] 
M. VejdemoJohansson and A. Leshchenko, Certified mapper: Repeated testing for acyclicity and obstructions to the nerve lemma, in Topological Data Analysis, Abel Symposia, 15, Springer, Cham, 2020, 491–515. doi: 10.1007/9783030434083_19. Google Scholar 
[1] 
Elamin H. Elbasha. Model for hepatitis C virus transmissions. Mathematical Biosciences & Engineering, 2013, 10 (4) : 10451065. doi: 10.3934/mbe.2013.10.1045 
[2] 
Tadas Telksnys, Zenonas Navickas, Miguel A. F. Sanjuán, Romas Marcinkevicius, Minvydas Ragulskis. Kink solitary solutions to a hepatitis C evolution model. Discrete & Continuous Dynamical Systems  B, 2020, 25 (11) : 44274447. doi: 10.3934/dcdsb.2020106 
[3] 
Yanyu Xiao, Xingfu Zou. On latencies in malaria infections and their impact on the disease dynamics. Mathematical Biosciences & Engineering, 2013, 10 (2) : 463481. doi: 10.3934/mbe.2013.10.463 
[4] 
Tao Feng, Zhipeng Qiu, Xinzhu Meng. Dynamics of a stochastic hepatitis C virus system with host immunity. Discrete & Continuous Dynamical Systems  B, 2019, 24 (12) : 63676385. doi: 10.3934/dcdsb.2019143 
[5] 
Jianlu Zhang. Coexistence of period 2 and 3 caustics for deformative nearly circular billiard maps. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 64196440. doi: 10.3934/dcds.2019278 
[6] 
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Persistent twodimensional strange attractors for a twoparameter family of Expanding Baker Maps. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 657670. doi: 10.3934/dcdsb.2018201 
[7] 
Julie Déserti. Jonquières maps and $SL(2;\mathbb{C})$cocycles. Journal of Modern Dynamics, 2016, 10: 2332. doi: 10.3934/jmd.2016.10.23 
[8] 
Grzegorz Graff, Piotr NowakPrzygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete & Continuous Dynamical Systems, 2006, 16 (4) : 843856. doi: 10.3934/dcds.2006.16.843 
[9] 
Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic & Related Models, 2011, 4 (1) : 345359. doi: 10.3934/krm.2011.4.345 
[10] 
Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97102. doi: 10.3934/era.2013.20.97 
[11] 
Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 20472051. doi: 10.3934/cpaa.2017100 
[12] 
Rui Wang, Rundong Zhao, Emily RibandoGros, Jiahui Chen, Yiying Tong, GuoWei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 6797. doi: 10.3934/fods.2021006 
[13] 
Xiaoqi Wei, GuoWei Wei. Homotopy continuation for the spectra of persistent Laplacians. Foundations of Data Science, 2021 doi: 10.3934/fods.2021017 
[14] 
Alejandro Adem and Jeff H. Smith. On spaces with periodic cohomology. Electronic Research Announcements, 2000, 6: 16. 
[15] 
Hui Wan, JingAn Cui. A model for the transmission of malaria. Discrete & Continuous Dynamical Systems  B, 2009, 11 (2) : 479496. doi: 10.3934/dcdsb.2009.11.479 
[16] 
Yu Gao, JianGuo Liu. The modified CamassaHolm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 25452592. doi: 10.3934/dcdsb.2018067 
[17] 
François Monard. Efficient tensor tomography in fanbeam coordinates. Inverse Problems & Imaging, 2016, 10 (2) : 433459. doi: 10.3934/ipi.2016007 
[18] 
Daniel Guan. Modification and the cohomology groups of compact solvmanifolds. Electronic Research Announcements, 2007, 13: 7481. 
[19] 
HuaiDong Cao and Jian Zhou. On quantum de Rham cohomology theory. Electronic Research Announcements, 1999, 5: 2434. 
[20] 
Dennise GarcíaBeltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295315. doi: 10.3934/jgm.2015.7.295 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]