\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A Bayesian multiscale deep learning framework for flows in random media

  • * Corresponding author: Nicholas Zabaras

    * Corresponding author: Nicholas Zabaras
Abstract Full Text(HTML) Figure(50) / Table(5) Related Papers Cited by
  • Fine-scale simulation of complex systems governed by multiscale partial differential equations (PDEs) is computationally expensive and various multiscale methods have been developed for addressing such problems. In addition, it is challenging to develop accurate surrogate and uncertainty quantification models for high-dimensional problems governed by stochastic multiscale PDEs using limited training data. In this work to address these challenges, we introduce a novel hybrid deep-learning and multiscale approach for stochastic multiscale PDEs with limited training data. For demonstration purposes, we focus on a porous media flow problem. We use an image-to-image supervised deep learning model to learn the mapping between the input permeability field and the multiscale basis functions. We introduce a Bayesian approach to this hybrid framework to allow us to perform uncertainty quantification and propagation tasks. The performance of this hybrid approach is evaluated with varying intrinsic dimensionality of the permeability field. Numerical results indicate that the hybrid network can efficiently predict well for high-dimensional inputs.

    Mathematics Subject Classification: Primary: 68T07; Secondary: 68T37.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Schematic of the fine-scale and coarse-scale grids. Thick lines represent the primal coarse-grid $ \bar{\Omega}_j $, and the blue line indicates a block of the dual coarse-grid $ \Omega_k^D $. Thin lines define the fine-scale elements $ f_i $ that constitute the fine-grid $ \{\Omega_i\}_{i = 1}^{n_f} $

    Figure 2.  A schematic of the multiscale framework

    Figure 3.  (a) Discretization of the domain: fine-scale domain (black bold lines correspond to the coarse-grid ($ \bar{\Omega}_j $) and thin lines correspond to the fine-grid $ \Omega_i $), coarse-blocks and fine-cells (b) Local triangulation (indicated in purple) and coarse-block centers (indicated in black) (c) Cells inside the support region are indicated in blue patch, the support boundary is indicated in green patch and the coarse center node is indicated in black for the corresponding coarse-block and (d) Global boundary (indicated in gray) and coarse-block center (indicated in black)

    Figure 4.  The basis functions for the interior and non-interior support regions: (a) Coarse-blocks ($ 3\times3 $) and basis function for coarse-block $ 5 $ (basis function for the interior support region), (b) Coarse-blocks ($ 3\times3 $) and basis function for coarse-block $ 1 $ (basis function for the non-interior support region) and (c) Illustration of the interior support regions (shown in the green patch) where the basis functions are computed using the Deep Learning surrogate, and non-interior support regions (shown in the blue patch) where the basis functions are computed using the multiscale solver

    Figure 5.  A schematic of the DenseED network. (a) The top block shows the DenseED architecture with the encoding layers, and the bottom block shows the decoding layers containing convolution, Batch Norm, and ReLU. The convolution in the encoding layer reduces the size of the feature map, and the convolution (ConvT) in the decoding layer performs up-sampling. (b) The dense block also contains convolution, Batch Norm, and ReLU. The main difference between the encoding or decoding layer and the dense block is that the size of the feature maps is the same as the input in the dense block. Lastly, we apply the sigmoid activation function at the end of the last decoding layer

    Figure 6.  Comparison of the standard multiscale framework with the data-driven hybrid multiscale DenseED framework

    Figure 7.  A schematic of the hybrid deep neural network- multiscale framework using DenseED. Parameters $ \mathit{\boldsymbol{A}} $, $ \mathit{\boldsymbol{q}} $ and $ \bar{\mathit{\boldsymbol{\Phi}}}^{non-int} $ are obtained from MRST [35] (magenta dashed line) and the network is trained using Pytorch (implementation is marked in blue dashed line)

    Figure 8.  Permeability field KLE$ -100 $ (top left), KLE$ -1000 $ (top right), KLE$ -16384 $ (bottom left) and channelized (bottom right)

    Figure 9.  Permeability coarse block (top) for KLE$ -100 $, KLE$ -1000 $, KLE$ -16384 $ and channelized field and the corresponding basis functions (bottom)

    Figure 10.  HM-DenseED model: Prediction of KLE$ -100 $ with $ 32 $ training data: first row (from left to right) shows the target (pressure, $ x- $velocity and $ y- $velocity components), the second row shows the corresponding predictions, and the last row shows the error between the corresponding targets and predictions

    Figure 11.  HM-DenseED model: Prediction of KLE$ -100 $ with $ 96 $ training data: first row (from left to right) shows the target (pressure, $ x- $velocity and $ y- $velocity components), the second row shows the corresponding predictions, and the last row shows the error between the corresponding targets and predictions

    Figure 12.  HM-DenseED model: Prediction of KLE$ -1000 $ with $ 64 $ training data: first row (from left to right) shows the target (pressure, $ x- $velocity and $ y- $velocity components), the second row shows the corresponding predictions, and the last row shows the error between the corresponding targets and predictions

    Figure 13.  HM-DenseED model: Prediction of KLE$ -1000 $ with $ 128 $ training data: first row (from left to right) shows the target (pressure, $ x- $velocity and $ y- $velocity components), the second row shows the corresponding predictions, and the last row shows the error between the corresponding targets and predictions

    Figure 14.  HM-DenseED model: Prediction of KLE$ -16384 $ with $ 96 $ training data: first row (from left to right) shows the target (pressure, $ x- $velocity and $ y- $velocity components), the second row shows the corresponding predictions, and the last row shows the error between the corresponding targets and predictions

    Figure 15.  HM-DenseED model: Prediction of KLE$ -16384 $ with $ 160 $ training data: first row (from left to right) shows the target (pressure, $ x- $velocity and $ y- $velocity components), the second row shows the corresponding predictions, and the last row shows the error between the corresponding targets and predictions

    Figure 16.  HM-DenseED model: Prediction of channelized field with $ 160 $ training data: first row (from left to right) shows the target (pressure, $ x- $velocity and $ y- $velocity components), the second row shows the corresponding predictions, and the last row shows the error between the corresponding targets and predictions

    Figure 17.  The basis function for KLE$ -100 $. The first row shows the ground truth basis function, HM-DenseED model predicted basis function, and the error between them for the model trained with $ 32 $ training data. The second row shows the ground truth basis function, HM-DenseED model predicted basis function, and the error between them for the model trained with $ 64 $ training data. The last row shows the ground truth basis function, HM-DenseED model predicted basis function, and the error between them for the model trained with $ 96 $ training data

    Figure 18.  The basis function for KLE$ -1000 $. The first row shows the ground truth basis function, HM-DenseED model predicted basis function, and the error between them for the model trained with $ 64 $ training data. The second row shows the ground truth basis function, HM-DenseED model predicted basis function, and the error between them for the model trained with $ 96 $ training data. The last row shows the ground truth basis function, HM-DenseED model predicted basis function, and the error between them for the model trained with $ 128 $ training data

    Figure 19.  The basis function for KLE$ -16384 $. The first row shows the ground truth basis function, HM-DenseED model predicted basis function, and the error between them for the model trained with $ 96 $ training data. The second row shows the ground truth basis function, HM-DenseED model predicted basis function, and the error between them for the model trained with $ 128 $ training data. The last row shows the ground truth basis function, HM-DenseED model predicted basis function, and the error between them for the model trained with $ 160 $ training data

    Figure 20.  The basis function for the channelized field. Here, we show the ground truth basis function, HM-DenseED model predicted basis function, and the error between them for the model trained with $ 160 $ training data

    Figure 21.  Distribution estimate for the pressure for KLE$ -100 $. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 22.  Distribution estimate for the pressure for KLE$ -1000 $. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 23.  Distribution estimate for the pressure for KLE$ -16384 $. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 24.  Distribution estimate for the pressure for channelized flow. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 25.  Distribution estimate for the $ x- $velocity component (horizontal flux) for KLE$ -100 $. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 26.  Distribution estimate for the $ x- $velocity component (horizontal flux) for KLE$ -1000 $. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 27.  Distribution estimate for the $ x- $velocity component (horizontal flux) for KLE$ -16384 $. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 28.  Distribution estimate for the $ x- $velocity component (horizontal flux) for channelized flow. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 29.  Distribution estimate for the $ y- $velocity component (vertical flux) for KLE$ -100 $. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 30.  Distribution estimate for the $ y- $velocity component (vertical flux) for KLE$ -1000 $. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 31.  Distribution estimate for the $ y- $velocity component (vertical flux) for KLE$ -16384 $. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 32.  Distribution estimate for the $ y- $velocity component (vertical flux) for channelized flow. Location: $ (0.6,0.4) $. Here, the Monte Carlo result is shown in the blue dashed line; the hybrid DenseED result is shown in green circles, and the DenseED model result is shown in magenta dashed line

    Figure 33.  Training and testing RMSE plot for KLE$ -100 $ ($ 64- $training data), KLE$ -1000 $ ($ 96- $training data), KLE$ -16384 $ ($ 128- $training data) and channelized field ($ 160- $ training data)

    Figure 34.  Comparison of test $ R^2 $ scores (for pressure) for HM-DenseED (left) and DenseED (right) for KLE$ -100 $, $ -1000 $, $ -16384 $ and channelized permeability field and for various training data

    Figure 35.  Prediction of KLE$ -100 $ with $ 32 $ training data (left), and $ 96 $ training data (right); For individual prediction statistics, from left to right (first row): For single test input $ \mathit{\boldsymbol{K}}^{*} $, test output (ground truth) $ t^{*} $, Predictive mean $ \mathbb{E}[\widehat{{\mathit{\boldsymbol{P}}}_f}^{*}|\mathit{\boldsymbol{K}}^{*},\mathcal{{{D}}}] $, from left to right (second row) Error: Predictive mean and test output (ground truth), and predictive variance $ \text{Var}(\widehat{{\mathit{\boldsymbol{P}}}_f}^{*}|\mathit{\boldsymbol{K}}^{*},\mathcal{{{D}}}) $

    Figure 36.  Prediction of KLE$ -1000 $ with $ 64 $ training data (left), and $ 128 $ training data (right); For individual prediction statistics, from left to right (first row): For single test input $ \boldsymbol{K}^{*} $, test output (ground truth) $ t^{*} $, predictive mean $ \mathbb{E}[\widehat{{\boldsymbol{P}}_f}^{*}|\boldsymbol{K}^{*},\mathcal{{D}}] $, from left to right (second row) Error: Predictive mean and test output (ground truth), and Predictive variance $ \text{Var}(\widehat{{\boldsymbol{P}}_f}^{*}|\boldsymbol{K}^{*},\mathcal{{D}}) $

    Figure 37.  Prediction of KLE$ -16384 $ with $ 96 $ training data (left), and $ 160 $ training data (right); For individual prediction statistics, from left to right (first row): For single test input $ \mathit{\boldsymbol{K}}^{*} $, test output (ground truth) $ t^{*} $, Predictive mean $ \mathbb{E}[\widehat{{\mathit{\boldsymbol{P}}}_f}^{*}|\mathit{\boldsymbol{K}}^{*},\mathcal{{{D}}}] $, from left to right (second row) Error: Predictive mean and test output (ground truth), and Predictive variance $ \text{Var}(\widehat{{\mathit{\boldsymbol{P}}}_f}^{*}|\mathit{\boldsymbol{K}}^{*},\mathcal{{{D}}}) $

    Figure 38.  Prediction for channelized field; For individual prediction statistics, from left to right (first row): For single test input $ \boldsymbol{K}^{*} $, test output (ground truth) $ t^{*} $, predictive mean $ \mathbb{E}[\widehat{{\boldsymbol{P}}_f}^{*}|\boldsymbol{K}^{*},\mathcal{{D}}] $, from left to right (second row) Error: Predictive mean and test output (ground truth), and predictive variance $ \text{Var}(\widehat{{\boldsymbol{P}}_f}^{*}|\boldsymbol{K}^{*},\mathcal{{D}}) $

    Figure 39.  MNLP of test data

    Figure 40.  Non-Bayesian and Bayesian test $ R^2 $ scores for KLE$ -100 $, $ -1000 $, $ -16384 $ and channelized field (Hybrid DenseED model)

    Figure 41.  Bayesian HM-DenseED: Training and testing RMSE plot for KLE$ -100 $ ($ 64- $training data), KLE$ -1000 $ ($ 96- $training data), KLE$ -16384 $ ($ 128- $training data) and channelized field ($ 160- $ training data)

    Figure 42.  (Left) Uncertainty propagation for KLE$ -100 $ ($ 32 $ training data). We show the Monte Carlo output mean, predictive output mean $ \mathbb{E}_{\mathit{\boldsymbol{\theta}}}[\mathbb{E}[\mathit{\boldsymbol{y}}|\mathit{\boldsymbol{\theta}}]] $, the error of the above two, and two standard deviations of the conditional predictive mean $ Var_{\mathit{\boldsymbol{\theta}}}[\mathbb{E}[\mathit{\boldsymbol{y}}|\mathit{\boldsymbol{\theta}}]] $. (Right) Uncertainty propagation for KLE$ -100 $: ($ 64 $ training data) we show the Monte Carlo output variance, predictive output variance $ \mathbb{E}_{\mathit{\boldsymbol{\theta}}}[Var(\mathit{\boldsymbol{y}} | \mathit{\boldsymbol{\theta}})] $, the error of the above two, and two standard deviations of the conditional predictive variance $ \text{Var}_{\mathit{\boldsymbol{\theta}}} (\text{Var}(\mathit{\boldsymbol{y}} | \mathit{\boldsymbol{\theta}})) $

    Figure 43.  Uncertainty propagation for KLE$ -100 $ ($ 96 $k__ge training data). (Left) We show the Monte Carlo output mean, predictive output mean $ \mathbb{E}_{\boldsymbol{\theta}}[\mathbb{E}[\boldsymbol{y}|\boldsymbol{\theta}]] $, the error of the above two, and two standard deviations of the conditional predictive mean $ Var_{\boldsymbol{\theta}}[\mathbb{E}[\boldsymbol{y}|\boldsymbol{\theta}]] $. (Right) We show the Monte Carlo output variance, predictive output variance $ \mathbb{E}_{\boldsymbol{\theta}}[Var(\boldsymbol{y} | \boldsymbol{\theta})] $, the error of the above two, and two standard deviations of the conditional predictive variance $ \text{Var}_{\boldsymbol{\theta}} (\text{Var}(\boldsymbol{y} | \boldsymbol{\theta})) $

    Figure 44.  Uncertainty propagation for KLE$ -1000 $ ($ 64 $k__ge training data). (Left) We show the Monte Carlo output mean, predictive output mean $ \mathbb{E}_{\boldsymbol{\theta}}[\mathbb{E}[\boldsymbol{y}|\boldsymbol{\theta}]] $, the error of the above two, and two standard deviations of the conditional predictive mean $ Var_{\boldsymbol{\theta}}[\mathbb{E}[\boldsymbol{y}|\boldsymbol{\theta}]] $. (Right) We show the Monte Carlo output variance, predictive output variance $ \mathbb{E}_{\boldsymbol{\theta}}[Var(\boldsymbol{y} | \boldsymbol{\theta})] $, the error of the above two, and two standard deviations of the conditional predictive variance $ \text{Var}_{\boldsymbol{\theta}} (\text{Var}(\boldsymbol{y} | \boldsymbol{\theta})) $

    Figure 45.  Uncertainty propagation for KLE$ -1000 $ ($ 128 $k__ge training data). (Left) We show the Monte Carlo output mean, predictive output mean $ \mathbb{E}_{\boldsymbol{\theta}}[\mathbb{E}[\boldsymbol{y}|\boldsymbol{\theta}]] $, the error of the above two, and two standard deviations of the conditional predictive mean $ Var_{\boldsymbol{\theta}}[\mathbb{E}[\boldsymbol{y}|\boldsymbol{\theta}]] $. (Right) We show the Monte Carlo output variance, predictive output variance $ \mathbb{E}_{\boldsymbol{\theta}}[Var(\boldsymbol{y} | \boldsymbol{\theta})] $, the error of the above two, and two standard deviations of the conditional predictive variance $ \text{Var}_{\boldsymbol{\theta}} (\text{Var}(\boldsymbol{y} | \boldsymbol{\theta})) $

    Figure 46.  Uncertainty propagation for KLE$ -16384 $ ($ 96 $k__ge training data). (Left) We show the Monte Carlo output mean, predictive output mean $ \mathbb{E}_{\boldsymbol{\theta}}[\mathbb{E}[\boldsymbol{y}|\boldsymbol{\theta}]] $, the error of the above two, and two standard deviations of the conditional predictive mean $ Var_{\boldsymbol{\theta}}[\mathbb{E}[\boldsymbol{y}|\boldsymbol{\theta}]] $. (Right) We show the Monte Carlo output variance, predictive output variance $ \mathbb{E}_{\boldsymbol{\theta}}[Var(\boldsymbol{y} | \boldsymbol{\theta})] $, the error of the above two, and two standard deviations of the conditional predictive variance $ \text{Var}_{\boldsymbol{\theta}} (\text{Var}(\boldsymbol{y} | \boldsymbol{\theta})) $

    Figure 47.  Uncertainty propagation for KLE$ -16384 $ ($ 160 $ training data). (Left) We show the Monte Carlo output mean, predictive output mean $ \mathbb{E}_{\boldsymbol{\theta}}[\mathbb{E}[\boldsymbol{y}|\boldsymbol{\theta}]] $, the error of the above two, and two standard deviations of the conditional predictive mean $ Var_{\boldsymbol{\theta}}[\mathbb{E}[\boldsymbol{y}|\boldsymbol{\theta}]] $. (Right) We show the Monte Carlo output variance, predictive output variance $ \mathbb{E}_{\boldsymbol{\theta}}[Var(\boldsymbol{y} | \boldsymbol{\theta})] $, the error of the above two, and two standard deviations of the conditional predictive variance $ \text{Var}_{\boldsymbol{\theta}} (\text{Var}(\boldsymbol{y} | \boldsymbol{\theta})) $

    Figure 48.  Uncertainty propagation for channelized field ($ 160 $ training data). (Left) We show the Monte Carlo output mean, predictive output mean $ \mathbb{E}_{\mathit{\boldsymbol{\theta}}}[\mathbb{E}[\mathit{\boldsymbol{y}}|\mathit{\boldsymbol{\theta}}]] $, the error of the above two, and two standard deviations of the conditional predictive mean $ Var_{\mathit{\boldsymbol{\theta}}}[\mathbb{E}[\mathit{\boldsymbol{y}}|\mathit{\boldsymbol{\theta}}]] $. (Right) We show the Monte Carlo output variance, predictive output variance $ \mathbb{E}_{\mathit{\boldsymbol{\theta}}}[Var(\mathit{\boldsymbol{y}} | \mathit{\boldsymbol{\theta}})] $, the error of the above two, and two standard deviations of the conditional predictive variance $ \text{Var}_{\mathit{\boldsymbol{\theta}}} (\text{Var}(\mathit{\boldsymbol{y}} | \mathit{\boldsymbol{\theta}})) $

    Figure 49.  Comparison of DenseED (first row) and fully-connected network (second row) for a test set

    Figure 50.  Distribution estimate for the pressure at location $ (0.96, 0.54) $

    Table 1.  DenseED architecture

    Layers $ C_f $ Resolution $ H_f \times W_f $ Number of parameters
    Input $ 1 $ $ 15 \times 15 $ -
    Convolution k7s2p3 $ 48 $ $ 7 \times 7 $ $ 2352 $
    Dense Block (1) K16L4 $ 112 $ $ 7 \times 7 $ $ 42048 $
    Encoding Layer $ 56 $ $ 4 \times 4 $ $ 34888 $
    Dense Block (2) K16L8 $ 184 $ $ 4 \times 4 $ $ 130944 $
    Decoding Layer (1) $ 92 $ $ 8 \times 8 $ $ 14276 $
    Dense Block (3) K16L4 $ 156 $ $ 8 \times 8 $ $ 67808 $
    Decoding Layer (2) $ 1 $ $ 15 \times 15 $ $ 13728 $
    $k =$ kernel size, $s =$ stride, $p =$ padding, $L =$ Number of layers and $K =$ growth rate.
     | Show Table
    DownLoad: CSV

    Table 2.  The computational cost for the HM-DenseED, the Bayesian HM-DenseED, the fine-scale and the multiscale simulation models in-terms of wall-clock time for obtaining the basis functions for $ 100 $ test data. Here, Matlab* indicates that we only use Matlab for generating the basis functions for the non-interior support regions and Matlab indicates generating the basis functions for both the interior and non-interior support regions

    Backend, Hardware Wall-clock (s) for obtaining the basis functions
    Fine-scale Fenics, Intel Xeon $E5-2680$ -
    Multiscale Matlab, Intel Xeon $E5-2680$ 654.930
    HM-DenseED PyTorch, Intel Xeon $E5-2680$
    Matlab$^{*}$, Intel Xeon $E5-2680$
    $\underset{(\text{Matlab*})}{113.23}$+$\underset{\text{(PyTorch)}}{19.5}$=132.73
    HM-DenseED PyTorch, NVIDIA Tesla V100
    Matlab$^{*}$, Intel Xeon $E5-2680$
    $\underset{(\text{Matlab*})}{113.23}$+$\underset{\text{(PyTorch)}}{1.9}$=115.13
    Bayesian HM-DenseED PyTorch, Intel Xeon $E5-2680$
    Matlab$^{*}$, Intel Xeon $E5-2680$
    $\underset{(\text{Matlab*})}{113.23}$+$\underset{\text{(PyTorch)}}{259.5}$ = 372.73
    Bayesian HM-DenseED PyTorch, NVIDIA Tesla $V100$
    Matlab$^{*}$, Intel Xeon $E5-2680$
    $\underset{(\text{Matlab*})}{113.23}$+$\underset{\text{(PyTorch)}}{15.7}$ = 128.93
     | Show Table
    DownLoad: CSV

    Table 3.  The computational cost for the HM-DenseED, the Bayesian HM-DenseED, the fine-scale and the multiscale simulation models in-terms of wall-clock time for obtaining the pressure for $100$ test data. Here, Matlab* indicates that we only use the Matlab for generating the basis functions for the non-interior support regions and Matlab indicates generating the basis functions for both the interior and non-interior support regions

    Backend, Hardware Wall-clock (s) for obtaining the pressure
    Fine-scale Fenics, Intel Xeon $E5-2680$ 2300.822
    Multiscale Matlab, Intel Xeon $E5-2680$ 1500.611
    HM-DenseED PyTorch, Intel Xeon $E5-2680$
    Matlab$^{*}$, Intel Xeon E5-2680
    $\underset{(\text{Matlab*})}{113.23}$+$\underset{\text{(PyTorch)}}{32.5}$=145.73
    HM-DenseED PyTorch, NVIDIA Tesla V100
    Matlab$^{*}$, Intel Xeon $E5-2680$
    $\underset{(\text{Matlab*})}{113.23}$+$\underset{\text{(PyTorch)}}{6.04}$=119.27
    Bayesian HM-DenseED PyTorch, Intel Xeon $E5-2680$
    Matlab$^{*}$, Intel Xeon $E5-2680$
    $\underset{(\text{Matlab*})}{113.23}$+$\underset{\text{(PyTorch)}}{627.20}$= 740.43
    Bayesian HM-DenseED PyTorch, NVIDIA Tesla V100
    Matlab$^{*}$, Intel Xeon $E5-2680$
    $\underset{(\text{Matlab*})}{113.23}$+$\underset{\text{(PyTorch)}}{61.27}$ = 174.5
     | Show Table
    DownLoad: CSV

    Table 4.  Test $ R^2 $ score for different configurations and data for KLE$ -100 $

    Data $ \longrightarrow $ $ \mathit{\boldsymbol{32}} $ $ \mathit{\boldsymbol{64}} $ $ \mathit{\boldsymbol{96}} $
    Configurations
    $ \downarrow $
    $ \mathit{\boldsymbol{1-1}} $ $ 0.799 $ $ 0.9317 $ $ 0.966 $
    $ \mathit{\boldsymbol{1-1-1}} $ $ 0.859 $ $ 0.9538 $ $ 0.968 $
    $ \mathit{\boldsymbol{1-1-1-1-1}} $ $ 0.825 $ $ 0.9198 $ $ 0.964 $
    $ \mathit{\boldsymbol{4-8-4}} $ $ 0.962 $ $ 0.97 $ $ 0.973 $
    $ \mathit{\boldsymbol{6-12-6}} $ $ 0.9624 $ $ 0.972 $ $ 0.9745 $
     | Show Table
    DownLoad: CSV

    Table 5.  Comparison of the DenseED with a fully-connected network for learning the basis functions

    Hybrid DenseED-multiscale Hybrid fully-connected
    Configuration $ 4-8-4 $ $ 225 $ $ \rightarrow $ $ 144 $ $ \rightarrow 64 \rightarrow 144 \rightarrow 225 $
    Learning rate $ 1e-5 $ $ 1e-4 $
    Weight decay $ 1e-6 $ $ 1e-5 $
    Optimizer Adam Adam
    Epochs $ 200 $ $ 200 $
     | Show Table
    DownLoad: CSV
  • [1] J. E. Aarnes, V. Kippe, K.-A. Lie and A. B. Rustad, Modelling of multiscale structures in flow simulations for petroleum reservoirs, Geometric Modelling, Numerical Simulation, and Optimization, (2007), 307–360. doi: 10.1007/978-3-540-68783-2_10.
    [2] J. E. Aarnes and Y. Efendiev, Mixed multiscale finite element methods for stochastic porous media flows, SIAM Journal on Scientific Computing, 30 (2008), 2319–2339. doi: 10.1137/07070108X.
    [3] M. S. Alnaes, et al., The FEniCS project version 1.5, Archive of Numerical Software, 3 (2015). doi: 10.11588/ans.2015.100.20553.
    [4] K. Aziz and A. Settari, Petroleum reservoir simulation, Blitzprint Ltd, (2002).
    [5] I. BilionisN. ZabarasB. A. Konomi and G. Lin, Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification, Journal of Computational Physics, 521 (2013), 212-239.  doi: 10.1016/j.jcp.2013.01.011.
    [6] C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, Weight uncertainty in neural networks, preprint, arXiv: 1505.05424.
    [7] S. Chan and A. H.Elsheikh, A machine learning approach for efficient uncertainty quantification using multiscale methods, Journal of Computational Physics, 354 (2018), 493-511.  doi: 10.1016/j.jcp.2017.10.034.
    [8] E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities, 3$^{rd}$ edition, Elsevier, 2005.
    [9] R. W. Freund, G. H. Golub and N. M. Nachtigal, Iterative solution of linear systems, Acta Numerica, 1 (1992), 57–100. doi: 10.1.1.55.5646.
    [10] Y. Gal and Z. Ghahramani, Dropout as a Bayesian approximation: Representing model uncertainty in deep learning, preprint, arXiv: 1506.02142.
    [11] N. Geneva and N. Zabaras, Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks, Journal of Computational Physics, 403 (2020), 109056. doi: 10.1016/j.jcp.2019.109056.
    [12] N. Geneva and N. Zabaras, Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks, Journal of Computational Physics, 394 (2019), 125-147.  doi: 10.1016/j.jcp.2019.01.021.
    [13] X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, (2011), 315–323. Available from: http://proceedings.mlr.press/v15/glorot11a.html.
    [14] I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT Press, 2016. Available from: http://www.deeplearningbook.org
    [15] K. He, X. Zhang, R. Shaoqing and J. Sun, Deep residual learning for image recognition, preprint, arXiv: 1512.03385.
    [16] J. Hernández-Lobato and R. Adams, Probabilistic backpropagation for scalable learning of Bayesian neural networks, preprint, arXiv: 1502.05336.
    [17] G. Huang, Z. Liu, L. van der Maaten and K. Q. Weinberger, Densely connected convolutional networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (2017). doi: 10.1109/cvpr.2017.243.
    [18] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, preprint, arXiv: 1502.03167.
    [19] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero and Y. Bengio, The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (2017), 11–19. doi: 10.1.1.55.5646.
    [20] P. JennyS. H. Lee and H. A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, Journal of Computational Physics, 187 (2003), 47-67.  doi: 10.1016/s0021-9991(03)00075-5.
    [21] D. Kingma and J.Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980.
    [22] D. P. Kingma, T. Salimans and M. Welling, Variational dropout and the local reparameterization trick, preprint, arXiv: 1506.02557.
    [23] A. Krizhevsky, I. Sutskever and G. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, (2012), 1097–1105. doi: 10.1145/3065386.
    [24] E. LaloyR. HéraultD. Jacques and N. Linde, Training-image based geostatistical inversion using a spatial generative adversarial neural network, Water Resources Research, 54 (2018), 381-406.  doi: 10.1016/j.jcp.2019.01.021.
    [25] Y. LeCunY. Bengio and G. Hinton, Deep learning, Nature, 521 (2015), 436-444.  doi: 10.1038/nature14539.
    [26] Q. Liu and D. Wang, Stein variational gradient descent: A general purpose Bayesian inference algorithm, preprint, arXiv: 1608.04471.
    [27] L. V. D. Maaten, E. Postma and J. Van den Herik, Dimensionality reduction: A comparative review, Journal of Machine Learning Research, 10 (2009), 66–71. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.5472.
    [28] S. Mo, N. Zabaras, X. Shi and J. Wu, Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-Gaussian hydraulic conductivities, Water Resources Research, 56 (2020). doi: 10.1029/2019WR026082.
    [29] S. MoY. ZhuN. ZabarasX. Shi and J. Wu, Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media, Water Resources Research, 55 (2018), 703-728.  doi: 10.1029/2018wr023528.
    [30] O. Møyner and K. Lie, A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids, Journal of Computational Physics, 304 (2016), 46-71.  doi: 10.1016/j.jcp.2015.10.010.
    [31] A. Paszke, et. al., Automatic differentiation in pytorch, Neural Information Processing Systems, (2017). Available from: https://openreview.net/forum?id=BJJsrmfCZ.
    [32] A. Radford, L. Metz and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, preprint, arXiv: abs/1511.06434.
    [33] O. Ronneberger, P. Fischer, B. Philipp and T. Brox, U-net: Convolutional networks for biomedical image segmentation, preprint, arXiv: 1505.04597.
    [34] S. ShahO. MøynerM. TeneK. Lie and H. Hajibeygi, The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB), Journal of Computational Physics, 318 (2016), 36-57.  doi: 10.1016/j.jcp.2016.05.001.
    [35] SINTEF MRST project web page, (2015), 66–71. Available from: http://www.sintef.no/Projectweb/MRST/.
    [36] N. Thuerey, K. Weissenow, H. Mehrotra, N. Mainali, L. Prantl and X. Hu, A study of deep learning methods for Reynolds-averaged Navier-Stokes simulations, preprint, arXiv: 1810.08217.
    [37] R. K. Tripathy and I. Bilionis, Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification, Journal of Computational Physics, 375 (2018), 565-588.  doi: 10.1016/j.jcp.2018.08.036.
    [38] D. Vernon, Machine vision-Automated visual inspection and robot vision, NASA STI/Recon Technical Report A, 92 (1991).
    [39] J. Wan and N. Zabaras, A probabilistic graphical model approach to stochastic multiscale partial differential equations, Journal of Computational Physics, 250 (2013), 477-510.  doi: 10.1016/j.jcp.2013.05.016.
    [40] M. Wang, S. W. Cheung, E. T. Chung, Y. Efendiev, W. T. Leung and Y. Wang, Prediction of discretization of GMsFEM using deep learning, Mathematics, 7 (2019), 412. doi: 10.3390/math7050412.
    [41] Y. Wang, S. Wun, E. T. Chung, Y. Efendiev and M. Wang, Deep multiscale model learning, preprint, arXiv: 1806.04830.
    [42] M. A. Zahangir, T. M. Tarek, C. Yakopcic, S. Westberg, P. Sidike, M. N. Shamima, B. C. Van Esesn, A. A. S. Awwal and V. K. Asari, The history began from AlexNET: A comprehensive survey on deep learning approaches, preprint, arXiv: 1803.01164.
    [43] M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, preprint, arXiv: 1311.2901.
    [44] J. Zhang, S. W. Cheung, Y. Efendiev, E. Gildin and E. T. Chung, Deep model reduction-model learning for reservoir simulation, Society of Petroleum Engineers, (2019). doi: 10.2118/193912-ms.
    [45] Y. Zhu and N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification, Journal of Computational Physics, 366 (2018), 415-447.  doi: 10.1016/j.jcp.2018.04.018.
    [46] Y. ZhuN. ZabarasP. Koutsourelakis and P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data, Journal of Computational Physics, 394 (2019), 56-81.  doi: 10.1016/j.jcp.2019.05.024.
  • 加载中

Figures(50)

Tables(5)

SHARE

Article Metrics

HTML views(1050) PDF downloads(328) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return