Layers | Resolution |
Number of parameters | |
Input | - | ||
Convolution k7s2p3 | |||
Dense Block (1) K16L4 | |||
Encoding Layer | |||
Dense Block (2) K16L8 | |||
Decoding Layer (1) | |||
Dense Block (3) K16L4 | |||
Decoding Layer (2) | |||
Fine-scale simulation of complex systems governed by multiscale partial differential equations (PDEs) is computationally expensive and various multiscale methods have been developed for addressing such problems. In addition, it is challenging to develop accurate surrogate and uncertainty quantification models for high-dimensional problems governed by stochastic multiscale PDEs using limited training data. In this work to address these challenges, we introduce a novel hybrid deep-learning and multiscale approach for stochastic multiscale PDEs with limited training data. For demonstration purposes, we focus on a porous media flow problem. We use an image-to-image supervised deep learning model to learn the mapping between the input permeability field and the multiscale basis functions. We introduce a Bayesian approach to this hybrid framework to allow us to perform uncertainty quantification and propagation tasks. The performance of this hybrid approach is evaluated with varying intrinsic dimensionality of the permeability field. Numerical results indicate that the hybrid network can efficiently predict well for high-dimensional inputs.
Citation: |
Figure 1.
Schematic of the fine-scale and coarse-scale grids. Thick lines represent the primal coarse-grid
Figure 3.
(a) Discretization of the domain: fine-scale domain (black bold lines correspond to the coarse-grid (
Figure 4.
The basis functions for the interior and non-interior support regions: (a) Coarse-blocks (
Figure 5. A schematic of the DenseED network. (a) The top block shows the DenseED architecture with the encoding layers, and the bottom block shows the decoding layers containing convolution, Batch Norm, and ReLU. The convolution in the encoding layer reduces the size of the feature map, and the convolution (ConvT) in the decoding layer performs up-sampling. (b) The dense block also contains convolution, Batch Norm, and ReLU. The main difference between the encoding or decoding layer and the dense block is that the size of the feature maps is the same as the input in the dense block. Lastly, we apply the sigmoid activation function at the end of the last decoding layer
Figure 7.
A schematic of the hybrid deep neural network- multiscale framework using DenseED. Parameters
Figure 10.
HM-DenseED model: Prediction of KLE
Figure 11.
HM-DenseED model: Prediction of KLE
Figure 12.
HM-DenseED model: Prediction of KLE
Figure 13.
HM-DenseED model: Prediction of KLE
Figure 14.
HM-DenseED model: Prediction of KLE
Figure 15.
HM-DenseED model: Prediction of KLE
Figure 16.
HM-DenseED model: Prediction of channelized field with
Figure 17.
The basis function for KLE
Figure 18.
The basis function for KLE
Figure 19.
The basis function for KLE
Figure 25.
Distribution estimate for the
Figure 26.
Distribution estimate for the
Figure 27.
Distribution estimate for the
Figure 28.
Distribution estimate for the
Figure 29.
Distribution estimate for the
Figure 30.
Distribution estimate for the
Figure 31.
Distribution estimate for the
Figure 32.
Distribution estimate for the
Figure 35.
Prediction of KLE
Figure 36.
Prediction of KLE
Figure 37.
Prediction of KLE
Figure 38.
Prediction for channelized field; For individual prediction statistics, from left to right (first row): For single test input
Figure 42.
(Left) Uncertainty propagation for KLE
Figure 43.
Uncertainty propagation for KLE
Figure 44.
Uncertainty propagation for KLE
Figure 45.
Uncertainty propagation for KLE
Figure 46.
Uncertainty propagation for KLE
Figure 47.
Uncertainty propagation for KLE
Figure 48.
Uncertainty propagation for channelized field (
Table 1. DenseED architecture
Layers | Resolution |
Number of parameters | |
Input | - | ||
Convolution k7s2p3 | |||
Dense Block (1) K16L4 | |||
Encoding Layer | |||
Dense Block (2) K16L8 | |||
Decoding Layer (1) | |||
Dense Block (3) K16L4 | |||
Decoding Layer (2) | |||
Table 2.
The computational cost for the HM-DenseED, the Bayesian HM-DenseED, the fine-scale and the multiscale simulation models in-terms of wall-clock time for obtaining the basis functions for
Backend, Hardware | Wall-clock (s) for obtaining the basis functions | |
Fine-scale | Fenics, Intel Xeon |
- |
Multiscale | Matlab, Intel Xeon |
654.930 |
HM-DenseED | PyTorch, Intel Xeon Matlab |
|
HM-DenseED | PyTorch, NVIDIA Tesla V100 Matlab |
|
Bayesian HM-DenseED | PyTorch, Intel Xeon Matlab |
|
Bayesian HM-DenseED | PyTorch, NVIDIA Tesla Matlab |
Table 3.
The computational cost for the HM-DenseED, the Bayesian HM-DenseED, the fine-scale and the multiscale simulation models in-terms of wall-clock time for obtaining the pressure for
Backend, Hardware | Wall-clock (s) for obtaining the pressure | |
Fine-scale | Fenics, Intel Xeon |
2300.822 |
Multiscale | Matlab, Intel Xeon |
1500.611 |
HM-DenseED | PyTorch, Intel Xeon Matlab |
|
HM-DenseED | PyTorch, NVIDIA Tesla V100 Matlab |
|
Bayesian HM-DenseED | PyTorch, Intel Xeon Matlab |
|
Bayesian HM-DenseED | PyTorch, NVIDIA Tesla V100 Matlab |
Table 4.
Test
Data |
|||
Configurations | |||
Table 5. Comparison of the DenseED with a fully-connected network for learning the basis functions
Hybrid DenseED-multiscale | Hybrid fully-connected | |
Configuration | ||
Learning rate | ||
Weight decay | ||
Optimizer | Adam | Adam |
Epochs |
[1] |
J. E. Aarnes, V. Kippe, K.-A. Lie and A. B. Rustad, Modelling of multiscale structures in flow simulations for petroleum reservoirs, Geometric Modelling, Numerical Simulation, and Optimization, (2007), 307–360.
doi: 10.1007/978-3-540-68783-2_10.![]() ![]() ![]() |
[2] |
J. E. Aarnes and Y. Efendiev, Mixed multiscale finite element methods for stochastic porous media flows, SIAM Journal on Scientific Computing, 30 (2008), 2319–2339.
doi: 10.1137/07070108X.![]() ![]() ![]() |
[3] |
M. S. Alnaes, et al., The FEniCS project version 1.5, Archive of Numerical Software, 3 (2015).
doi: 10.11588/ans.2015.100.20553.![]() ![]() |
[4] |
K. Aziz and A. Settari, Petroleum reservoir simulation, Blitzprint Ltd, (2002).
![]() |
[5] |
I. Bilionis, N. Zabaras, B. A. Konomi and G. Lin, Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification, Journal of Computational Physics, 521 (2013), 212-239.
doi: 10.1016/j.jcp.2013.01.011.![]() ![]() ![]() |
[6] |
C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra, Weight uncertainty in neural networks, preprint, arXiv: 1505.05424.
![]() |
[7] |
S. Chan and A. H.Elsheikh, A machine learning approach for efficient uncertainty quantification using multiscale methods, Journal of Computational Physics, 354 (2018), 493-511.
doi: 10.1016/j.jcp.2017.10.034.![]() ![]() ![]() |
[8] |
E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities, 3$^{rd}$ edition, Elsevier, 2005.
![]() |
[9] |
R. W. Freund, G. H. Golub and N. M. Nachtigal, Iterative solution of linear systems, Acta Numerica, 1 (1992), 57–100.
doi: 10.1.1.55.5646.![]() ![]() ![]() |
[10] |
Y. Gal and Z. Ghahramani, Dropout as a Bayesian approximation: Representing model uncertainty in deep learning, preprint, arXiv: 1506.02142.
![]() |
[11] |
N. Geneva and N. Zabaras, Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks, Journal of Computational Physics, 403 (2020), 109056.
doi: 10.1016/j.jcp.2019.109056.![]() ![]() ![]() |
[12] |
N. Geneva and N. Zabaras, Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks, Journal of Computational Physics, 394 (2019), 125-147.
doi: 10.1016/j.jcp.2019.01.021.![]() ![]() ![]() |
[13] |
X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, (2011), 315–323. Available from: http://proceedings.mlr.press/v15/glorot11a.html.
![]() |
[14] |
I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT Press, 2016. Available from: http://www.deeplearningbook.org
![]() ![]() |
[15] |
K. He, X. Zhang, R. Shaoqing and J. Sun, Deep residual learning for image recognition, preprint, arXiv: 1512.03385.
![]() |
[16] |
J. Hernández-Lobato and R. Adams, Probabilistic backpropagation for scalable learning of Bayesian neural networks, preprint, arXiv: 1502.05336.
![]() |
[17] |
G. Huang, Z. Liu, L. van der Maaten and K. Q. Weinberger, Densely connected convolutional networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (2017).
doi: 10.1109/cvpr.2017.243.![]() ![]() |
[18] |
S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, preprint, arXiv: 1502.03167.
![]() |
[19] |
S. Jégou, M. Drozdzal, D. Vazquez, A. Romero and Y. Bengio, The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (2017), 11–19.
doi: 10.1.1.55.5646.![]() ![]() |
[20] |
P. Jenny, S. H. Lee and H. A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, Journal of Computational Physics, 187 (2003), 47-67.
doi: 10.1016/s0021-9991(03)00075-5.![]() ![]() |
[21] |
D. Kingma and J.Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980.
![]() |
[22] |
D. P. Kingma, T. Salimans and M. Welling, Variational dropout and the local reparameterization trick, preprint, arXiv: 1506.02557.
![]() |
[23] |
A. Krizhevsky, I. Sutskever and G. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, (2012), 1097–1105.
doi: 10.1145/3065386.![]() ![]() |
[24] |
E. Laloy, R. Hérault, D. Jacques and N. Linde, Training-image based geostatistical inversion using a spatial generative adversarial neural network, Water Resources Research, 54 (2018), 381-406.
doi: 10.1016/j.jcp.2019.01.021.![]() ![]() |
[25] |
Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, 521 (2015), 436-444.
doi: 10.1038/nature14539.![]() ![]() |
[26] |
Q. Liu and D. Wang, Stein variational gradient descent: A general purpose Bayesian inference algorithm, preprint, arXiv: 1608.04471.
![]() |
[27] |
L. V. D. Maaten, E. Postma and J. Van den Herik, Dimensionality reduction: A comparative review, Journal of Machine Learning Research, 10 (2009), 66–71. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.5472.
![]() |
[28] |
S. Mo, N. Zabaras, X. Shi and J. Wu, Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-Gaussian hydraulic conductivities, Water Resources Research, 56 (2020).
doi: 10.1029/2019WR026082.![]() ![]() |
[29] |
S. Mo, Y. Zhu, N. Zabaras, X. Shi and J. Wu, Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media, Water Resources Research, 55 (2018), 703-728.
doi: 10.1029/2018wr023528.![]() ![]() |
[30] |
O. Møyner and K. Lie, A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids, Journal of Computational Physics, 304 (2016), 46-71.
doi: 10.1016/j.jcp.2015.10.010.![]() ![]() ![]() |
[31] |
A. Paszke, et. al., Automatic differentiation in pytorch, Neural Information Processing Systems, (2017). Available from: https://openreview.net/forum?id=BJJsrmfCZ.
![]() |
[32] |
A. Radford, L. Metz and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, preprint, arXiv: abs/1511.06434.
![]() |
[33] |
O. Ronneberger, P. Fischer, B. Philipp and T. Brox, U-net: Convolutional networks for biomedical image segmentation, preprint, arXiv: 1505.04597.
![]() |
[34] |
S. Shah, O. Møyner, M. Tene, K. Lie and H. Hajibeygi, The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB), Journal of Computational Physics, 318 (2016), 36-57.
doi: 10.1016/j.jcp.2016.05.001.![]() ![]() ![]() |
[35] |
SINTEF MRST project web page, (2015), 66–71. Available from: http://www.sintef.no/Projectweb/MRST/.
![]() |
[36] |
N. Thuerey, K. Weissenow, H. Mehrotra, N. Mainali, L. Prantl and X. Hu, A study of deep learning methods for Reynolds-averaged Navier-Stokes simulations, preprint, arXiv: 1810.08217.
![]() |
[37] |
R. K. Tripathy and I. Bilionis, Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification, Journal of Computational Physics, 375 (2018), 565-588.
doi: 10.1016/j.jcp.2018.08.036.![]() ![]() ![]() |
[38] |
D. Vernon, Machine vision-Automated visual inspection and robot vision, NASA STI/Recon Technical Report A, 92 (1991).
![]() |
[39] |
J. Wan and N. Zabaras, A probabilistic graphical model approach to stochastic multiscale partial differential equations, Journal of Computational Physics, 250 (2013), 477-510.
doi: 10.1016/j.jcp.2013.05.016.![]() ![]() ![]() |
[40] |
M. Wang, S. W. Cheung, E. T. Chung, Y. Efendiev, W. T. Leung and Y. Wang, Prediction of discretization of GMsFEM using deep learning, Mathematics, 7 (2019), 412.
doi: 10.3390/math7050412.![]() ![]() |
[41] |
Y. Wang, S. Wun, E. T. Chung, Y. Efendiev and M. Wang, Deep multiscale model learning, preprint, arXiv: 1806.04830.
![]() |
[42] |
M. A. Zahangir, T. M. Tarek, C. Yakopcic, S. Westberg, P. Sidike, M. N. Shamima, B. C. Van Esesn, A. A. S. Awwal and V. K. Asari, The history began from AlexNET: A comprehensive survey on deep learning approaches, preprint, arXiv: 1803.01164.
![]() |
[43] |
M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, preprint, arXiv: 1311.2901.
![]() |
[44] |
J. Zhang, S. W. Cheung, Y. Efendiev, E. Gildin and E. T. Chung, Deep model reduction-model learning for reservoir simulation, Society of Petroleum Engineers, (2019).
doi: 10.2118/193912-ms.![]() ![]() |
[45] |
Y. Zhu and N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification, Journal of Computational Physics, 366 (2018), 415-447.
doi: 10.1016/j.jcp.2018.04.018.![]() ![]() ![]() |
[46] |
Y. Zhu, N. Zabaras, P. Koutsourelakis and P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data, Journal of Computational Physics, 394 (2019), 56-81.
doi: 10.1016/j.jcp.2019.05.024.![]() ![]() ![]() |