\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generalized penalty for circular coordinate representation

  • * Corresponding author: Hengrui Luo

    * Corresponding author: Hengrui Luo 
Abstract / Introduction Full Text(HTML) Figure(22) Related Papers Cited by
  • Topological Data Analysis (TDA) provides novel approaches that allow us to analyze the geometrical shapes and topological structures of a dataset. As one important application, TDA can be used for data visualization and dimension reduction. We follow the framework of circular coordinate representation, which allows us to perform dimension reduction and visualization for high-dimensional datasets on a torus using persistent cohomology. In this paper, we propose a method to adapt the circular coordinate framework to take into account the roughness of circular coordinates in change-point and high-dimensional applications. To do that, we use a generalized penalty function instead of an $ L_{2} $ penalty in the traditional circular coordinate algorithm. We provide simulation experiments and real data analyses to support our claim that circular coordinates with generalized penalty will detect the change in high-dimensional datasets under different sampling schemes while preserving the topological structures.

    Mathematics Subject Classification: 55N31, 62R40, 68T09.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.1.  Example in Section 2.3 of [47] with four points $ a = (-1,0.5),b = (1,0.5),c = (1,-0.5),d = (-1,-0.5) $

    Figure 1.2.  The scatter plot, barcode, coordinate plot, and the colormap for the dataset $ X\subset\mathbb{R}^{2} $, which is a dataset of $ 50 $ points equidistantly sampled on a figure-$ 8 $ shape

    Figure 2.1.  The dataset $ X\subset\mathbb{R}^{3} $, which is a dataset of $ 150 $ samples on a figure-$ 8 $ shape $ S^{1}\times\{0\}\bigcup\{0\}\times(S^{1}(-1,-1)) $, where $ S^{1}(-1,-1) $ denotes a unit circle centered at $ (-1,-1) $

    Figure 2.2.  The dimension reduced data $ X^{cc} $ obtained from circular coordinates based on the Vietoris-Rips complex constructed from $ X $

    Figure 2.3.  The PCA representation $ X^{pca} $ from choosing $ 2 $ principal components

    Figure 3.1.  Example 1: The $ L_{2} $ smoothed and generalized penalized circular coordinates of the uniformly sampled dataset ($ n = 300 $) from a ring of inner radius $ R = 1.5 $ and width $ d = 1.5 $. The first, second, and the third row correspond to $ \lambda = 0,0.5 $, and 1, respectively

    Figure 3.2.  Example 1: The $ L_{1} $ smoothed (first column) and $ L_{2} $ smoothed (second column) circular coordinates of the uniformly sampled dataset from a ring with the same radius $ R = 1.5 $ but different widths $ d = 1,2,7.5 $, corresponding to each row. The first and second columns correspond to $ \lambda = 0 $ and 1, respectively

    Figure 3.3.  Functional norms of varying $ \lambda $ coefficient on Example 1: The $ L_1 $ (first row), $ L_2 $ (second row), and mixed norm (third row) for smoothed circular coordinates functions optimized with different choices of $ \lambda $ as in (2.3). The coordinates are computed for the uniformly sampled dataset from a ring with the same radius $ R = 1.5 $ but different widths $ d = 1,2,7.5 $, as in Figure 3.2, corresponding to each column. We also use black vertical dashed lines to delineate the $ \lambda = 0,0.5,1 $ on the log scale

    Figure 3.4.  Example 2: The $ L_{2} $ smoothed and generalized penalized circular coordinate (displayed in different rows) of the uniformly sampled dataset ($ n = 100 $) from double rings, both with inner radius $ R = 1.5 $ and width $ d = 0.5 $. The first, second, and the third row correspond to $ \lambda = 0,0.5 $, and 1, respectively

    Figure 3.5.  Example 3: The $ L_{2} $ smoothed and generalized penalized circular coordinate (displayed in different rows) of the uniformly sampled dataset ($ n = 300 $) from Dupin cyclides (a.k.a. pinched torus). The first, second, and the third row correspond to $ \lambda = 0,0.5 $, and 1, respectively

    Figure 4.1.  The $ S^{1} $ representation obtained from the circular coordinate representation under different penalty functions. The first, second, and the third row correspond to $ \lambda = 0 $, $ 0.5 $, and $ 1 $, respectively

    Figure 4.2.  The $ L_{2} $ smoothed and generalized penalized circular coordinates (displayed in different rows) of the three collections of fan frequency dataset ($ n = 175 $) from [37] plotted against indices (equivalent to the distances of distance-bins). The first, second, and the third row correspond to $ \lambda = 0 $, $ 0.5 $, and 1, respectively. The circular coordinates with generalized penalty function are much sparser compared to the coordinates associated with the $ L_2 $ penalty function, which means that our method captures the periodic pattern better

    Figure 4.3.  The $ L_{2} $ smoothed and generalized penalized (mod 1) combined circular coordinates among congressman/woman across party-lines. Each point represents a congressman/woman and the color represents party-lines. The circular coordinates are computed from congress voting datasets from years 1990, 1998, and 2006 (displayed in different rows). The first and the second column correspond to $ \lambda = 0 $ and $ 1 $, respectively. We compute the cluster scores by mapping the combined circular coordinates (summed up by all 1-cocycles with persistence greater than 1) to $ \mathbb{R}^2 $ with the mapping $ x\mapsto(\cos(2\pi x),\sin(2\pi x)) $ to accommodate the circularity.

    Figure B.1.  The GPCA representation $ X^{gpca,2} $ and $ X^{gpca,3} $ of the embeddings from the first $ 2 $ principal components of the homogeneous polynomials of degree $ 2 $ and $ 3 $, respectively

    Figure C.1.  Evaluation of dimension reduction results obtained from different NLDR methods with the congress voting dataset of year 1990. We display the coranking matrices of PCA and t-SNE in the first row, and the coranking matrices of UMAP and Laplacian eigenmap in the second row. We display the coranking matrices of circular coordinates with penalty functions $ L_{1} $, elastic norm, and $ L_{2} $ in the third row

    Figure C.2.  Evaluation of dimension reduction results obtained from different NLDR methods with the congress voting dataset of year 1998. We display the coranking matrices of PCA and t-SNE in the first row, and the coranking matrices of UMAP and Laplacian eigenmap in the second row. We display the coranking matrices of circular coordinates with penalty functions $ L_{1} $, elastic norm, and $ L_{2} $ in the third row

    Figure C.3.  Evaluation of dimension reduction results obtained from different NLDR methods with the congress voting dataset of year 2006. We display the coranking matrices of PCA and t-SNE in the first row, and the coranking matrices of UMAP and Laplacian eigenmap in the second row. We display the coranking matrices of circular coordinates with penalty functions $ L_{1} $, elastic norm and $ L_{2} $ in the third row

    Figure D.1.  Example 5: The $ L_{2} $ smoothed and generalized penalized circular coordinates of the Jacobian rejection sampled dataset ($ n = 300 $) from a ring with fixed width (Jacobian rejection sampling). The first, second, and the third row correspond to $ \lambda = 0 $, $ 0.5 $, and $ 1 $, respectively

    Figure D.2.  Example 6: The $ L_{2} $ smoothed and generalized penalized circular coordinates of the Jacobian rejection sampled dataset ($ n = 300 $) from a Dupin cyclide with $ r = 2 $, $ R = 1.5 $ as in Section 3.4. The first, second, and the third row correspond to $ \lambda = 0 $, $ 0.5 $, and 1, respectively

    Figure E.1.  (top) Barcode for a simulated example of 150 uniformly sampled points from an annulus. (bottom) Resulting circular coordinates computed using different thresholds along the filtration for longest persisting cocycle represented as color of the points

    Figure E.2.  (top) Barcode for a simulated example of 150 uniformly sampled points from an annulus. (center) Resulting circular coordinates computed using different thresholds along the filtration for longest persisting cocycle represented as color of the points. (bottom) Resulting circular coordinates plotted against the angle theta between the respective point and the $ x = 0 $ axis with values colored the same way as the center row

    Figure E.3.  Comparison of 100 circular coordinates computed with threshold varying between the birth and death of the longest cocycle in the example Fig. E.2. The blue bars represent a box plot for the circular coordinate values for the circular coordinates relative to the points represented by angle theta

  • [1] H. Adams, A. Tausz and M. Vejdemo-Johansson, JavaPlex: A research software package for persistent (co) homology, in International Congress on Mathematical Software, Lecture Notes in Computer Science, 8592, Springer, Berlin, Heidelberg, (2014), 129–136. doi: 10.1007/978-3-662-44199-2_23.
    [2] C. C. Aggarwal, A. Hinneburg and D. A. Keim, On the surprising behavior of distance metrics in high dimensional space, in International Conference on Database Theory, Lecture Notes in Computer Science, 1973, Springer, Berlin, Heidelberg, (2001), 420–434. doi: 10.1007/3-540-44503-X_27.
    [3] J. Alman and V. Vassilevska Williams, A refined laser method and faster matrix multiplication, in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia, PA, (2021), 522–539. doi: 10.1137/1.9781611976465.32.
    [4] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application, Prentice Hall Information and System Sciences Series, Prentice Hall, Inc., Englewood Cliffs, NJ, 1993.
    [5] U. Bauer, Ripser: Efficient computation of Vietoris-Rips persistence barcodes, J. Appl. Comput. Topol., 5 (2021), 391-423.  doi: 10.1007/s41468-021-00071-5.
    [6] M. Belkin and P. Niyogi, Laplacian Eigenmaps for dimensionality reduction and data representation, Neural Computation, 15 (2003), 1373-1396.  doi: 10.1162/089976603321780317.
    [7] E. Berberich and M. Kerber, Exact arrangements on tori and Dupin cyclides, in Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, ACM, (2008), 59–66. doi: 10.1145/1364901.1364912.
    [8] T. Caliński and J. Harabasz, A dendrite method for cluster analysis, Comm. Statist., 3 (1974), 1-27.  doi: 10.1080/03610927408827101.
    [9] E. J. Candès, Mathematics of sparsity (and a few other things), in Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. 1, Kyung Moon Sa, Seoul, 2014,235–258.
    [10] G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 255-308.  doi: 10.1090/S0273-0979-09-01249-X.
    [11] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput., 9 (1990), 251-280.  doi: 10.1016/S0747-7171(08)80013-2.
    [12] D. L. Davies and D. W. Bouldin, A cluster separation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1 (1979), 224-227.  doi: 10.1109/TPAMI.1979.4766909.
    [13] R. C. de Amorim and B. Mirkin, Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering, Pattern Recognition, 45 (2012), 1061-1075.  doi: 10.1016/j.patcog.2011.08.012.
    [14] V. de SilvaD. Morozov and M. Vejdemo-Johansson, Persistent cohomology and circular coordinates, Discrete Comput. Geom., 45 (2011), 737-759.  doi: 10.1007/s00454-011-9344-x.
    [15] David L. Donoho and Ca rrie Grimes, Hessian eigenmaps: Locally linear em-bedding techniques for high-dimensional data, Proceedings of the National Academy of Sciences, 100 (2003), 5591-5596.  doi: 10.1073/pnas.1031596100.
    [16] M. Elad, Sparse and Redundant Representations. From Theory to Applications in Signal and Image Processing, Springer, New York, 2010. doi: 10.1007/978-1-4419-7011-4.
    [17] B. T. FasyF. LecciA. RinaldoL. WassermanS. Balakrishnan and A. Singh, Confidence sets for persistence diagrams, Ann. Statist., 42 (2014), 2301-2339.  doi: 10.1214/14-AOS1252.
    [18] A. Gupta and R. Bowden, Evaluating dimensionality reduction techniques for visual category recognition using rényi entropy, 19th European Signal Processing Conference, IEEE, Barcelona, Spain, 2011.
    [19] T. HastieR. Tibshirani and  M. WainwrightStatistical Learning with Sparsity. The Lasso and Generalizations, Monographs on Statistics and Applied Probability, 143, CRC Press, Boca Raton, FL, 2015. 
    [20] A. HatcherAlgebraic Topology, Cambridge University Press, Cambridge, 2002. 
    [21] S. Holmes, Personal communication, 2020.
    [22] D. P. Kingma and J. L. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980.
    [23] G. KraemerM. Reichstein and M. D. Mahecha, dimRed and coRanking–-Unifying dimensionality reduction in R, The R Journal, 10 (2018), 342-358.  doi: 10.32614/RJ-2018-039.
    [24] J. H. Krijthe, Rtsne: T-Distributed Stochastic Neighbor Embedding Using Barnes-Hut Implementation, 2015., Available from: https://github.com/jkrijthe/Rtsne.
    [25] J. A. Lee and M. Verleysen, Quality assessment of dimensionality reduction: Rank-based criteria, Neurocomputing, 72 (2009), 1431-1443.  doi: 10.1016/j.neucom.2008.12.017.
    [26] W. Lueks, B. Mokbel, M. Biehl and B. Hammer, How to evaluate dimensionality reduction?–Improving the co-ranking matrix, preprint, arXiv: 1110.3917.
    [27] H. Luo and D. Li, Spherical rotation dimension reduction with geometric loss functions, work in progress.
    [28] H. Luo, S. N. MacEachern and M. Peruggia, Asymptotics of lower dimensional zero-density regions, preprint, arXiv: arXiv: 2006.02568.
    [29] L. McInnes, J. Healy and J. Melville, UMAP: Uniform manifold approximation and projection for dimension reduction, preprint, arXiv: 1802.03426.
    [30] B. Michel, A Statistical Approach to Topological Data Analysis, Ph.D thesis, UPMC Université Paris Ⅵ, 2015.
    [31] N. Milosavljević, D. Morozov and P. Škraba, Zigzag persistent homology in matrix multiplication time, Computational Geometry (SCG'11), ACM, New York, (2011), 216–225. doi: 10.1145/1998196.1998229.
    [32] D. Morozov, Dionysus2: A library for computing persistent homology., Available from: https://github.com/mrzv/dionysus.
    [33] P. NiyogiS. Smale and S. Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39 (2008), 419-441.  doi: 10.1007/s00454-008-9053-2.
    [34] N. OtterM. A. PorterU. TillmannP. Grindrod and H. A. Harrington, A roadmap for the computation of persistent homology, EPJ Data Science, 6 (2017), 1-38.  doi: 10.1140/epjds/s13688-017-0109-5.
    [35] E. S. Page, Continuous inspection schemes, Biometrika, 41 (1954), 100-115.  doi: 10.1093/biomet/41.1-2.100.
    [36] L. Polanco and J. A. Perea, Coordinatizing data with lens spaces and persistent cohomology, preprint, arXiv: 1905.00350.
    [37] M. Robinson, Multipath-dominant, pulsed doppler analysis of rotating blades, preprint, arXiv: 1204.4366.
    [38] M. Robinson, Personal communication, 2019.
    [39] E. Ronchetti, The main contributions of robust statistics to statistical science and a new challenge, METRON, 79 (2021), 127-135.  doi: 10.1007/s40300-020-00185-3.
    [40] A. Tausz and G. Carlsson, Applications of zigzag persistence to topological data analysis, preprint, arXiv: 1108.3545.
    [41] L. van der Maaten and G. Hinton, Visualizing data using t-SNE, J. Mach. Learning Res., 9(2008), 2579-2605. Available from: http://jmlr.org/papers/v9/vandermaaten08a.html.
    [42] M. Vejdemo-Johansson, G. Carlsson, P. Y. Lum, A. Lehman, G. Singh and T. Ishkhanov, The topology of politics: Voting connectivity in the US House of Representatives, in NIPS 2012 Workshop on Algebraic Topology and Machine Learning, 2012.
    [43] L. VendraminR. J. G. B. Campello and E. R. Hruschka, Relative clustering validity criteria: A comparative overview, Stat. Anal. Data Min., 3 (2010), 209-235.  doi: 10.1002/sam.10080.
    [44] R. VidalY. Ma and S. S. Sastry, Generalized principal component analysis (GPCA), IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (2005), 1945-1959.  doi: 10.1109/TPAMI.2005.244.
    [45] B. WangB. SummaV. Pascucci and M. Vejdemo-Johansson, Branching and circular features in high dimensional data, IEEE Transactions on Visualization and Computer Graphics, 17 (2011), 1902-1911.  doi: 10.1109/TVCG.2011.177.
    [46] E. Zemel, An O(n) algorithm for the linear multiple choice knapsack problem and related problems, Inform. Process. Lett., 18 (1984), 123-128.  doi: 10.1016/0020-0190(84)90014-0.
    [47] X. Zhu, Persistent homology: An introduction and a new text representation for natural language processing, in Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, 2013, 1953–1959. Available from: https://www.ijcai.org/Proceedings/13/Papers/288.pdf.
  • 加载中

Figures(22)

SHARE

Article Metrics

HTML views(2190) PDF downloads(227) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return