[1]
|
R. J. Adler, E. Subag and J. E. Taylor, et al., Rotation and scale space random fields and the gaussian kinematic formula, Ann. Statist., 40 (2012), 2910-2942.
doi: 10.1214/12-AOS1055.
|
[2]
|
R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer, New York, 2007.
|
[3]
|
M. N. Alam, T. Son, D. Toslak, J. I. Lim and X. Yao, Quantitative artery-vein analysis in optical coherence tomography angiography of diabetic retinopathy, in Ophthalmic Technologies XXIX, vol. 10858, International Society for Optics and Photonics, (2019), 1085802.
doi: 10.1117/12.2510213.
|
[4]
|
M. Alam, Y. Zhang, J. I. Lim, R. V. Chan, M. Yang and X. Yao, Quantitative optical coherence tomography angiography features for objective classification and staging of diabetic retinopathy, Retina, 40 (2020), 322-332.
doi: 10.1097/IAE.0000000000002373.
|
[5]
|
R. Andreeva, A. Fontanella, Y. Giarratano and M. O. Bernabeu, Dr detection using optical coherence tomography angiography (octa): A transfer learning approach with robustness analysis, in International Workshop on Ophthalmic Medical Image Analysis, Springer, (2020), 11–20.
|
[6]
|
Y. Baryshnikov and R. Ghrist, Target enumeration via Euler characteristic integrals, SIAM J. Appl. Math., 70 (2009), 825-844.
doi: 10.1137/070687293.
|
[7]
|
Y. Baryshnikov and R. Ghrist, Euler integration over definable functions, Proc. Natl. Acad. Sci. USA, 107 (2010), 9525-9530.
doi: 10.1073/pnas.0910927107.
|
[8]
|
Y. Baryshnikov, R. Ghrist and D. Lipsky, Inversion of Euler integral transforms with applications to sensor data, Inverse Problems, 27 (2011), 124001, 10 pp.
doi: 10.1088/0266-5611/27/12/124001.
|
[9]
|
O. Bobrowski and P. Skraba, Homological percolation and the Euler characteristic, Phys. Rev. E, 101 (2020), 032304, 16 pp.
doi: 10.1103/physreve.101.032304.
|
[10]
|
F. Cagliari and C. Landi, Finiteness of rank invariants of multidimensional persistent homology groups, Appl. Math. Lett., 24 (2011), 516-518.
doi: 10.1016/j.aml.2010.11.004.
|
[11]
|
G. Carlsson and A. Zomorodian, The theory of multidimensional persistence, Discrete Comput. Geom., 42 (2009), 71-93.
doi: 10.1007/s00454-009-9176-0.
|
[12]
|
F. Chazal, L. J. Guibas, S. Y. Oudot and P. Skraba, Persistence-based clustering in Riemannian manifolds, J. ACM, 60 (2013), Art. 41, 38 pp.
doi: 10.1145/2535927.
|
[13]
|
L. Crawford, A. Monod, A. X. Chen, S. Mukherjee and R. Rabadán, Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis, J. Amer. Statist. Assoc., 115 (2020), 1139-1150.
doi: 10.1080/01621459.2019.1671198.
|
[14]
|
J. Curry, R. Ghrist and M. Robinson, Euler calculus with applications to signals and sensing, in Proc. Sympos. Appl. Math., vol. 70, (2012), 75–146.
doi: 10.1090/psapm/070/589.
|
[15]
|
J. Curry, S. Mukherjee and K. Turner, How many directions determine a shape and other sufficiency results for two topological transforms, arXiv preprint, arXiv: 1805.09782.
|
[16]
|
M. Díaz, J. Novo, P. Cutrín, F. Gómez-Ulla, M. G. Penedo and M. Ortega, Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images, PloS One, 14.
|
[17]
|
P. J. Diggle, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, CRC press, 2014.
|
[18]
|
H. Edelsbrunner and J. L. Harer, Computational Topology: An Introduction, American Mathematical Society, 2010.
doi: 10.1090/mbk/069.
|
[19]
|
H. Edelsbrunner and E. P. Mücke, Three-dimensional alpha shapes, VVS '92: Proceedings of the 1992 workshop on Volume visualization, (1992), 75–82.
doi: 10.1145/147130.147153.
|
[20]
|
J. M. Ekoé, M. Rewers, R. Williams and P. Zimmet, The Epidemiology of Diabetes Mellitus, John Wiley & Sons, 2008.
|
[21]
|
B. T. Fasy, S. Micka, D. L. Millman, A. Schenfisch and L. Williams, Challenges in reconstructing shapes from euler characteristic curves, arXiv preprint, arXiv: 1811.11337.
|
[22]
|
F. J. Freiberg, M. Pfau, J. Wons, M. A. Wirth, M. D. Becker and S. Michels, Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy, Graefe's Archive for Clinical and Experimental Ophthalmology, 254 (2016), 1051-1058.
doi: 10.1007/s00417-015-3148-2.
|
[23]
|
R. Ghrist, R. Levanger and H. Mai, Persistent homology and Euler integral transforms, J. Appl. Comput. Topol., 2 (2018), 55-60.
doi: 10.1007/s41468-018-0017-1.
|
[24]
|
R. Ghrist and M. Robinson, Euler–Bessel and Euler–Fourier transforms, Inverse Problems, 27 (2011), 124006, 12 pp.
doi: 10.1088/0266-5611/27/12/124006.
|
[25]
|
Y. Giarratano, E. Bianchi, C. Gray, A. Morris, T. MacGillivray, B. Dhillon and M. O. Bernabeu, Automated segmentation of optical coherence tomography angiography images: Benchmark data and clinically relevant metrics, Translational Vision Science & Technology, 9 (2020), 5-5.
|
[26]
|
Y. Giarratano, A. Pavel, J. Lian, R. Andreeva, A. Fontanella, R. Sarkar, L. Reid, S. Forbes, D. Pugh, T. E. Farrah, N. Dhaun, B. Dhillon, T. MacGillivray and M. O. Bernabeu, A framework for the discovery of retinal biomarkers in Optical Coherence Tomography Angiography (OCTA), MICCAI Workshop on Ophthalmic Medical Image Analysis – OMIA 2020.
|
[27]
|
Y. Giarratano, A. Pavel, J. Lian, R. Andreeva, A. Fontanella, R. Sarkar, L. J. Reid, S. Forbes, D. Pugh, T. E. Farrah et al., A framework for the discovery of retinal biomarkers in Optical Coherence Tomography Angiography (OCTA), in International Workshop on Ophthalmic Medical Image Analysis, Springer, (2020), 155–164.
|
[28]
|
V. Guillemin and A. Pollack, Differential Topology, vol. 370, American Mathematical Soc., 2010.
doi: 10.1090/chel/370.
|
[29]
|
H. A. Harrington, N. Otter, H. Schenck and U. Tillmann, Stratifying multiparameter persistent homology, SIAM J. Appl. Algebra Geom., 3 (2019), 439-471.
doi: 10.1137/18M1224350.
|
[30]
|
A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
|
[31]
|
T. Heiss and H. Wagner, Streaming algorithm for Euler characteristic curves of multidimensional images, CAIP 2017: Computer Analysis of Images and Patterns, 10424 (2017), 397-409.
doi: 10.1007/978-3-319-64689-3_32.
|
[32]
|
M. Hofert, I. Kojadinovic, M. Mächler and J. Yan, Elements of Copula Modeling with R, Springer, 2018.
doi: 10.1007/978-3-319-89635-9.
|
[33]
|
Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto and J. Hornegger, et al., Split-spectrum amplitude-decorrelation angiography with optical coherence tomography, Optics Express, 20 (2012), 4710-4725.
doi: 10.1364/OE.20.004710.
|
[34]
|
M. Kahle, Topology of random clique complexes, Discrete Math., 309 (2009), 1658-1671.
doi: 10.1016/j.disc.2008.02.037.
|
[35]
|
M. Kahle, Topology of random simplicial complexes: A survey, Algebraic Topology: Applications and New Directions, 620 (2014), 201-221.
doi: 10.1090/conm/620/12367.
|
[36]
|
M. Kashiwara and P. Schapira, Integral transforms with exponential kernels and laplace transform, J. Amer. Math. Soc., 10 (1997), 939-972.
doi: 10.1090/S0894-0347-97-00245-2.
|
[37]
|
M. Kashiwara and P. Schapira, Persistent homology and microlocal sheaf theory, J. Appl. Comput. Topol., 2 (2018), 83-113.
doi: 10.1007/s41468-018-0019-z.
|
[38]
|
J. Khadamy, K. A. Aghdam and K. G. Falavarjani, An update on optical coherence tomography angiography in diabetic retinopathy, Journal of Ophthalmic & Vision Research, 13 (2018), 487.
|
[39]
|
D. P. Kroese and Z. I. Botev, Spatial process generation, arXiv preprint, arXiv: 1308.0399.
|
[40]
|
D. Le, M. Alam, B. A. Miao, J. I. Lim and X. Yao, Fully automated geometric feature analysis in optical coherence tomography angiography for objective classification of diabetic retinopathy, Biomedical Optics Express, 10 (2019), 2493-2503.
doi: 10.1364/BOE.10.002493.
|
[41]
|
Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86 (1998), 2278-2324.
doi: 10.1109/5.726791.
|
[42]
|
T. Leinster, The Euler characteristic of a category, Doc. Math., 13 (2008), 21-49.
|
[43]
|
M. P. Lesnick, Multidimensional Interleavings and Applications to Topological Inference, Stanford University, 2012.
|
[44]
|
X.-X. Li, W. Wu, H. Zhou, J.-J. Deng, M.-Y. Zhao, T.-W. Qian, C. Yan, X. Xu and S.-Q. Yu, A quantitative comparison of five optical coherence tomography angiography systems in clinical performance, International Journal of Ophthalmology, 11 (2018), 1784.
|
[45]
|
N. Linial and Y. Peled, On the phase transition in random simplicial complexes, Ann. of Math., 184 (2016), 745-773.
doi: 10.4007/annals.2016.184.3.3.
|
[46]
|
A. McCleary and A. Patel, Multiparameter persistence diagrams, arXiv preprint.
|
[47]
|
National Health Service, Diabetic retinopathy, Available from: https://www.nhs.uk/conditions/diabetic-retinopathy, 2020, [Accessed on 1 August 2020].
|
[48]
|
R. B. Nelsen, An Introduction to Copulas, Second edition. Springer Series in Statistics. Springer, New York, 2006.
|
[49]
|
T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllönen and S. Huovinen, Outex-new framework for empirical evaluation of texture analysis algorithms, in Proceedings of the 16th International Conference on Pattern Recognition, (2002), 701–706.
doi: 10.1109/ICPR.2002.1044854.
|
[50]
|
S. Oudot and E. Solomon, Inverse problems in topological persistence, in Topological Data Analysis, Springer, (2020), 405–433.
|
[51]
|
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss and V. Dubourg, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12 (2011), 2825-2830.
|
[52]
|
W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel and T. E. Nichols, Statistical Parametric Mapping: The Analysis of Functional Brain Images, Elsevier, 2011.
|
[53]
|
P. Pranav, R. Van de Weygaert, G. Vegter, B. J. Jones, R. J. Adler, J. Feldbrugge, C. Park, T. Buchert and M. Kerber, Topology and geometry of Gaussian random fields I: On Betti numbers, Euler characteristic, and Minkowski functionals, Monthly Notices of the Royal Astronomical Society, 485 (2019), 4167-4208.
doi: 10.1093/mnras/stz541.
|
[54]
|
E. Richardson and M. Werman, Efficient classification using Euler characteristic, Pattern Recognition Letters, 49 (2014), 99-106.
doi: 10.1016/j.patrec.2014.07.001.
|
[55]
|
E. Richardson and M. Werman, Efficient classification using the Euler characteristic, Pattern Recognition Letters, 49 (2014), 99-106.
doi: 10.1016/j.patrec.2014.07.001.
|
[56]
|
H. S. Sandhu, N. Eladawi, M. Elmogy, R. Keynton, O. Helmy, S. Schaal and A. El-Baz, Automated diabetic retinopathy detection using optical coherence tomography angiography: A pilot study, British Journal of Ophthalmology, 102 (2018), 1564-1569.
|
[57]
|
M. Sasongko, T. Wong, T. Nguyen, C. Cheung, J. Shaw and J. Wang, Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy, Diabetologia, 54 (2011), 2409-2416.
doi: 10.1007/s00125-011-2200-y.
|
[58]
|
P. Schapira, Tomography of constructible functions, in International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, Springer, (1995), 427–435.
doi: 10.1007/3-540-60114-7_33.
|
[59]
|
M. Scolamiero, W. Chachólski, A. Lundman, R. Ramanujam and S. Öberg, Multidimensional persistence and noise, Found. Comput. Math., 17 (2017), 1367-1406.
doi: 10.1007/s10208-016-9323-y.
|
[60]
|
S. Stolte and R. Fang, A survey on medical image analysis in diabetic retinopathy, Medical Image Analysis, 64 (2020), 101742.
doi: 10.1016/j.media.2020.101742.
|
[61]
|
N. Takase, M. Nozaki, A. Kato, H. Ozeki, M. Yoshida and Y. Ogura, Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography, Retina, 35 (2015), 2377-2383.
doi: 10.1097/IAE.0000000000000849.
|
[62]
|
K. Y. Tey, K. Teo, A. C. Tan, K. Devarajan, B. Tan, J. Tan, L. Schmetterer and M. Ang, Optical coherence tomography angiography in diabetic retinopathy: A review of current applications, Eye and Vision, 6 (2019), 1-10.
doi: 10.1186/s40662-019-0160-3.
|
[63]
|
I. A. Thompson, A. K. Durrani and S. Patel, Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy, Eye, 33 (2019), 648-652.
doi: 10.1038/s41433-018-0286-x.
|
[64]
|
K. Turner, S. Mukherjee and D. M. Boyer, Persistent homology transform for modeling shapes and surfaces, Inf. Inference, 3 (2014), 310-344.
doi: 10.1093/imaiai/iau011.
|
[65]
|
R. Van De Weygaert, G. Vegter, H. Edelsbrunner, B. J. Jones, P. Pranav, C. Park, W. A. Hellwing, B. Eldering, N. Kruithof, E. P. Bos et al., Alpha, Betti and the Megaparsec Universe: On the topology of the cosmic web, in Transactions on Computational Science XIV, Springer, (2011), 60–101.
doi: 10.1007/978-3-642-25249-5_3.
|
[66]
|
L. van den Dries, Tame Topology and O-Minimal Structures, vol. 248, Cambridge university press, 1998.
doi: 10.1017/CBO9780511525919.
|
[67]
|
K. J. Worsley, Detecting activation in fMRI data, Stat. Methods Med. Res., 12 (2003), 401-418.
doi: 10.1191/0962280203sm340ra.
|
[68]
|
K. J. Worsley, J. E. Taylor, F. Tomaiuolo and J. Lerch, Unified univariate and multivariate random field theory, Neuroimage, 23 (2004), S189–S195.
doi: 10.1016/j.neuroimage.2004.07.026.
|
[69]
|
X. Yao, M. N. Alam, D. Le and D. Toslak, Quantitative optical coherence tomography angiography: A review, Experimental Biology and Medicine, 245 (2020), 301-312.
doi: 10.1177/1535370219899893.
|