[1]
|
T. W. Anderson, Asymptotically efficient estimation of covariance matrices with linear structure, Ann. Statist., 1 (1973), 135-141.
doi: 10.1214/aos/1193342389.
|
[2]
|
O. Barndorff-Nielsen, Information and Exponential Families in Statistical Theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Ltd., Chichester, 1978.
|
[3]
|
M. Bukal, I. Marković and I. Petrović, Score matching based assumed density filtering with the von Mises-Fisher distribution, 20th International Conference on Information Fusion (Fusion), Xi'an, China, 2017.
|
[4]
|
G. Burgers, P. J. van Leeuwen and G. Evensen, Analysis scheme in the ensemble Kalman filter, Monthly Weather Review, 126 (1998), 1719-1724.
doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.
|
[5]
|
A. P. Dempster, Covariance selection, Biometrics, 28 (1972), 157-175.
doi: 10.2307/2528966.
|
[6]
|
P. G. M. Forbes and S. Lauritzen, Linear estimating equations for exponential families with application to Gaussian linear concentration models, Linear Algebra Appl., 473 (2015), 261-283.
doi: 10.1016/j.laa.2014.08.015.
|
[7]
|
R. Furrer and T. Bengtsson, Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants, J. Multivariate Anal., 98 (2007), 227-255.
doi: 10.1016/j.jmva.2006.08.003.
|
[8]
|
J. E. Gentle, Matrix Algebra. Theory, Computations and Applications in Statistics, 2$^nd$ edition, Springer Texts in Statistics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-64867-5.
|
[9]
|
A. Hyvärinen, Estimation of non-normalized statistical models by score matching, J. Mach. Learn. Res., 6 (2005), 695-709.
|
[10]
|
A. Hyvärinen, Some extensions of score matching, Comput. Statist. Data Anal., 51 (2007), 2499-2512.
doi: 10.1016/j.csda.2006.09.003.
|
[11]
|
I. Kasanický, J. Mandel and M. Vejmelka, Spectral diagonal ensemble Kalman filters, Nonlin. Processes Geophys., 22 (2015), 485-497.
doi: 10.5194/npg-22-485-2015.
|
[12]
|
M. Katzfuss, J. R. Stroud and C. K. Wikle, Understanding the ensemble Kalman filter, Amer. Statist., 70 (2016), 350-357.
doi: 10.1080/00031305.2016.1141709.
|
[13]
|
S. L. Lauritzen, Graphical Models, Oxford Statistical Science Series, 17, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.
|
[14]
|
K. Law, A. Stuart and K. Zygalakis, Data assimilation. A Mathematical Introduction, Texts in Applied Mathematics, 62, Springer, Cham, 2015.
doi: 10.1007/978-3-319-20325-6.
|
[15]
|
K. Law, H. Tembine and R. Tempone, Deterministic mean-field ensemble Kalman filtering, SIAM J. Sci. Comput., 38 (2016), A1251–A1279.
doi: 10.1137/140984415.
|
[16]
|
F. Le Gland, V. Monbet and V.-D. Tran, Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford Univ. Press, Oxford, 2011, 598–631.
|
[17]
|
E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, 3$^{rd}$ edition, Springer Texts in Statistics, Springer, New York, 2005.
doi: 10.1007/0-387-27605-X.
|
[18]
|
F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B Stat. Methodol., 73 (2011), 423-498.
doi: 10.1111/j.1467-9868.2011.00777.x.
|
[19]
|
D. M. Livings, S. L. Dance and N. K. Nichols, Unbiased ensemble square root filters, Phys. D, 237 (2008), 1021-1028.
doi: 10.1016/j.physd.2008.01.005.
|
[20]
|
E. N. Lorenz, Predictability - A problem partly solved, in Predictability of Weather and Climate, Cambridge University Press, 2006, 40–58.
doi: 10.1017/CBO9780511617652.004.
|
[21]
|
J. Mandel, L. Cobb and J. D. Beezley, On the convergence of the ensemble Kalman filter, Appl. Math., 56 (2011), 533-541.
doi: 10.1007/s10492-011-0031-2.
|
[22]
|
E. D. Nino-Ruiz and A. Sandu, Ensemble Kalman filter implementations based on shrinkage covariance matrix estimation, Ocean Dynamics, 65 (2015), 1423-1439.
doi: 10.1007/s10236-015-0888-9.
|
[23]
|
O. Pannekoucke, L. Berre and G. Desroziers, Filtering properties of wavelets for local background-error correlations, Quart. J. Roy. Meterol. Soc., 133 (2007), 363-379.
doi: 10.1002/qj.33.
|
[24]
|
J. A. Rozanov, Markov random fields, and stochastic partial differential equations, Mat. Sb. (N.S.), 103 (1977), 590-613.
|
[25]
|
H. Rue and L. Held, Gaussian Markov Random Fields. Theory and Applications, Monographs on Statistics and Applied Probability, 104, Chapman & Hall/CRC, Boca Raton, FL, 2005.
doi: 10.1201/9780203492024.
|
[26]
|
P. Sakov and P. Oke, A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters, Tellus A, 60 (2008), 361-371.
doi: 10.1111/j.1600-0870.2007.00299.x.
|
[27]
|
D. Simpson, F. Lindgren and H. Rue, Think continuous: Markovian Gaussian models in spatial statistics, Spatial Statistics, 1 (2012), 16-29.
doi: 10.1016/j.spasta.2012.02.003.
|
[28]
|
A. Spantini, R. Baptista and Y. Marzouk, Coupling techniques for nonlinear ensemble filtering, preprint, arXiv: 1907.00389.
|
[29]
|
M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill and J. S. Whitaker, Ensemble square root filters, Monthly Weather Review, 131 (2003), 1485-1490.
doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.
|
[30]
|
F. Tronarp, R. Hostettler and S. Särkkä, Continuous-discrete von Mises-Fisher filtering on $S^2$ for reference vector tracking, 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 2018.
doi: 10.23919/ICIF.2018.8455299.
|
[31]
|
M. Turčičová, Covariance Estimation for Filtering in High Dimension, Ph.D thesis, Charles University, 2021. Available from: http://hdl.handle.net/20.500.11956/136400.
|
[32]
|
G. Ueno and T. Tsuchiya, Covariance regularization in inverse space, Quart. J. Roy. Meterol. Soc., 135 (2009), 1133-1156.
doi: 10.1002/qj.445.
|
[33]
|
A. W. van der Vaart, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, 3, Cambridge University Press, Cambridge, 1998.
doi: 10.1017/CBO9780511802256.
|
[34]
|
X. Wang, C. H. Bishop and S. J. Julier, Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble?, Monthly Weather Review, 132 (2004), 1590-1605.
doi: 10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.
|
[35]
|
A. Weaver and P. Courtier, Correlation modelling on the sphere using a generalized diffusion equation, Quart. J. Roy. Meterol. Soc., 127 (2001), 1815-1846.
doi: 10.1002/qj.49712757518.
|
[36]
|
A. T. Weaver and I. Mirouze, On the diffusion equation and its application to isotropic and anisotropic correlation modelling in variational assimilation, Quart. J. Roy. Meterol. Soc., 139 (2013), 242-260.
doi: 10.1002/qj.1955.
|