[1]
|
H. Adams and G. Carlsson, Evasion paths in mobile sensor networks, International Journal of Robotics Research, 34 (2015), 90-104.
|
[2]
|
H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova, E. Hanson, F. Motta and L. Ziegelmeier, Persistence images: A stable vector representation of persistent homology, J. Mach. Learn. Res., 18 (2017), Paper No. 8, 35 pp. http://jmlr.org/papers/v18/16-337.html.
|
[3]
|
H. Adams, D. Ghosh, C. Mask, W. Ott and K. Williams, Efficient evader detection in mobile sensor networks, arXiv preprint, arXiv: 2101.09813.
|
[4]
|
P. Arora, D. Deepali and S. Varshney, Analysis of K-means and K-medoids algorithm for big data, Procedia Computer Science, 78 (2016), 507-512.
doi: 10.1016/j.procs.2016.02.095.
|
[5]
|
A. Banman and L. Ziegelmeier, Mind the gap: A study in global development through persistent homology, in Research in Computational Topology, Springer, 2018,125–144.
doi: 10.1007/978-3-319-89593-2_8.
|
[6]
|
D. Bhaskar, A. Manhart, J. Milzman, J. T. Nardini, K. M. Storey, C. M. Topaz and L. Ziegelmeier, Analyzing collective motion with machine learning and topology, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 123125, 12 pp.
doi: 10.1063/1.5125493.
|
[7]
|
P. Bubenik, Statistical topological data analysis using persistence landscapes, J. Mach. Learn. Res., 16 (2015), 77-102.
|
[8]
|
D. Burago, Y. Burago and S. Ivanov, A course in Metric Geometry, vol. 33, American Mathematical Society, Providence, 2001.
doi: 10.1090/gsm/033.
|
[9]
|
G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 255-308.
doi: 10.1090/S0273-0979-09-01249-X.
|
[10]
|
G. Carlsson and V. de Silva, Zigzag persistence, Found. Comput. Math., 10 (2010), 367-405.
doi: 10.1007/s10208-010-9066-0.
|
[11]
|
G. Carlsson, V. de Silva, S. Kališnik and D. Morozov, Parametrized homology via zigzag persistence, Algebr. Geom. Topol., 19 (2019), 657-700.
doi: 10.2140/agt.2019.19.657.
|
[12]
|
G. Carlsson, V. de Silva and D. Morozov, Zigzag persistent homology and real-valued functions, in Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009,247–256.
doi: 10.1145/1542362.1542408.
|
[13]
|
G. Carlsson, G. Singh and A. Zomorodian, Computing multidimensional persistence, Algorithms and computation, 730–739, Lecture Notes in Comput. Sci., 5878, Springer, Berlin, 2009.
doi: 10.1007/978-3-642-10631-6_74.
|
[14]
|
G. Carlsson and A. Zomorodian, The theory of multidimensional persistence, Discrete Comput. Geom., 42 (2009), 71-93.
doi: 10.1007/s00454-009-9176-0.
|
[15]
|
A. Cerri, B. D. Fabio, M. Ferri, P. Frosini and C. Landi, Betti numbers in multidimensional persistent homology are stable functions, Math. Methods Appl. Sci., 36 (2013), 1543-1557.
doi: 10.1002/mma.2704.
|
[16]
|
W. Chachólski, M. Scolamiero and F. Vaccarino, Combinatorial presentation of multidimensional persistent homology, J. Pure Appl. Algebra, 221 (2017), 1055-1075.
doi: 10.1016/j.jpaa.2016.09.001.
|
[17]
|
F. Chazal, V. de Silva and S. Oudot, Persistence stability for geometric complexes, Geometriae Dedicata, 174 (2014), 193-214.
doi: 10.1007/s10711-013-9937-z.
|
[18]
|
D. Cohen-Steiner, H. Edelsbrunner and J. Harer, Stability of persistence diagrams, Discrete Comput. Geom., 37 (2007), 103-120.
doi: 10.1007/s00454-006-1276-5.
|
[19]
|
D. Cohen-Steiner, H. Edelsbrunner and D. Morozov, Vines and vineyards by updating persistence in linear time, in Computational Geometry (SCG'06), ACM, 2006,119–126.
doi: 10.1145/1137856.1137877.
|
[20]
|
P. Corcoran and C. B. Jones, Modelling topological features of swarm behaviour in space and time with persistence landscapes, IEEE Access, 5 (2017), 18534-18544.
doi: 10.1109/ACCESS.2017.2749319.
|
[21]
|
D. B. Damiano and M. R. McGuirl, A topological analysis of targeted in-111 uptake in SPECT images of murine tumors, J. Math. Biol., 76 (2018), 1559-1587.
doi: 10.1007/s00285-017-1184-8.
|
[22]
|
V. de Silva and R. Ghrist, Coordinate-free coverage in sensor networks with controlled boundaries via homology, The International Journal of Robotics Research, 25 (2006), 1205-1222.
doi: 10.1177/0278364906072252.
|
[23]
|
V. de Silva and R. Ghrist, Coverage in sensor networks via persistent homology, Algebr. Geom. Topol., 7 (2007), 339-358.
doi: 10.2140/agt.2007.7.339.
|
[24]
|
T. K. Dey and C. Xin, Computing bottleneck distance for 2-d interval decomposable modules, arXiv preprint, arXiv: 1803.02869.
|
[25]
|
M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006), 104302.
doi: 10.1103/PhysRevLett.96.104302.
|
[26]
|
H. Edelsbrunner and J. L. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, 2010.
doi: 10.1090/mbk/069.
|
[27]
|
H. Edelsbrunner, D. Morozov and A. Patel, The stability of the apparent contour of an orientable 2-manifold, Topological Methods in Data Analysis and Visualization. Mathematics and Visualization., 27–41, Math. Vis., Springer, Heidelberg, 2011.
doi: 10.1007/978-3-642-15014-2_3.
|
[28]
|
B. T. Fasy, J. Kim, F. Lecci, C. Maria, D. L. Millman and V. Rouvreau, Tda: Statistical tools for topological data analysis, https://cran.r-project.org/web/packages/TDA/index.html.
|
[29]
|
M. Feng and M. A. Porter, Persistent homology of geospatial data: A case study with voting, SIAM Rev., 63 (2021), 67-99.
doi: 10.1137/19M1241519.
|
[30]
|
M. Feng and M. A. Porter, Spatial applications of topological data analysis: Cities, snowflakes, random structures, and spiders spinning under the influence, Phys. Rev. Research, 2 (2020), 033426.
doi: 10.1103/PhysRevResearch.2.033426.
|
[31]
|
R. Ghrist, Barcodes: The persistent topology of data, ull. Amer. Math. Soc. (N.S.), 45 (2008), 61-75.
doi: 10.1090/S0273-0979-07-01191-3.
|
[32]
|
C. Giusti, L. Papadopoulos, E. T. Owens, K. E. Daniels and D. S. Bassett, Topological and geometric measurements of force-chain structure, Physical Review E, 94 (2016), 032909.
doi: 10.1103/PhysRevE.94.032909.
|
[33]
|
I. T. Jolliffe, Principal Component Analysis, Springer Verlag, 1986.
doi: 10.1007/978-1-4757-1904-8.
|
[34]
|
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, vol. 157, pringer-Verlag, New York, 2004.
doi: 10.1007/b97315.
|
[35]
|
L. Kaufman and P. Rousseeuw, Clustering by Means of Medoids, North-Holland, 1987.
|
[36]
|
W. Kim and F. Mémoli, Stable signatures for dynamic metric spaces via zigzag persistent homology, arXiv preprint, arXiv: 1712.04064.
|
[37]
|
W. Kim and F. Mémoli, Spatiotemporal persistent homology for dynamic metric spaces, Discrete Comput. Geom., 66 (2021), 831-875.
doi: 10.1007/s00454-019-00168-w.
|
[38]
|
M. Lesnick, The theory of the interleaving distance on multidimensional persistence modules, Found. Comput. Math., 15 (2015), 613-650.
doi: 10.1007/s10208-015-9255-y.
|
[39]
|
M. Maechler, Finding groups in data: Cluster analysis extended rousseeuw et al, https://cran.r-project.org/web/packages/cluster/cluster.pdf.
|
[40]
|
A. McCleary and A. Patel, Bottleneck stability for generalized persistence diagrams, Proc. Amer. Math. Soc., 148 (2020), 3149-3161.
doi: 10.1090/proc/14929.
|
[41]
|
A. McCleary and A. Patel, Edit distance and persistence diagrams over lattices, arXiv preprint, arXiv: 2010.07337.
|
[42]
|
E. Miller, Data structures for real multiparameter persistence modules, arXiv preprint, arXiv: 1709.08155.
|
[43]
|
N. Milosavljević, D. Morozov and P. Škraba, Zigzag persistent homology in matrix multiplication time, in Computational geometry (SCG'11), 2011,216–225.
doi: 10.1145/1998196.1998229.
|
[44]
|
D. Morozov, Personal communication.
|
[45]
|
D. Morozov, Dionysus, http://www.mrzv.org/software/dionysus/.
|
[46]
|
J. R. Munkres, Topology, Prentice-Hall Englewood Cliffs, NJ, 1975.
|
[47]
|
C. Nilsen, J. Paige, O. Warner, B. Mayhew, R. Sutley, M. Lam, A. J. Bernoff and C. M. Topaz, Social aggregation in pea aphids: Experiment and random walk modeling, PLoS ONE, 8 (2013), e83343.
doi: 10.1371/journal.pone.0083343.
|
[48]
|
N. Otter, M. A. Porter, U. Tillmann, P. Grindrod and H. A. Harrington, A roadmap for the computation of persistent homology, EPJ Data Science, 6 (2017), 17.
|
[49]
|
S. Y. Oudot, Persistence Theory: From Quiver Representations to Data Analysis, vol. 209, American Mathematical Society Providence, RI, 2015.
doi: 10.1090/surv/209.
|
[50]
|
H.-S. Park and C.-H. Jun, A simple and fast algorithm for $k$-medoids clustering, Expert Systems with Applications, 36 (2009), 3336-3341.
doi: 10.1016/j.eswa.2008.01.039.
|
[51]
|
A. Patel, Generalized persistence diagrams, J. Appl. Comput. Topol., 1 (2018), 397-419.
doi: 10.1007/s41468-018-0012-6.
|
[52]
|
V. Puuska, Erosion distance for generalized persistence modules, Homology Homotopy Appl., 22 (2020), 233-254.
doi: 10.4310/HHA.2020.v22.n1.a14.
|
[53]
|
M. Scolamiero, W. Chachólski, A. Lundman, R. Ramanujam and S. Öberg, Multidimensional persistence and noise, Found. Comput. Math., 17 (2017), 1367-1406.
doi: 10.1007/s10208-016-9323-y.
|
[54]
|
B. J. Stolz, H. A. Harrington and M. A. Porter, Persistent homology of time-dependent functional networks constructed from coupled time series, Chaos, 27 (2017), 047410, 17 pp.
doi: 10.1063/1.4978997.
|
[55]
|
C. M. Topaz, L. Ziegelmeier and T. Halverson, Topological data analysis of biological aggregation models, PloS One, 10 (2015), e0126383.
doi: 10.1371/journal.pone.0126383.
|
[56]
|
M. Ulmer, L. Ziegelmeier and C. M. Topaz, A topological approach to selecting models of biological experiments, PloS One, 14 (2019), e0213679.
doi: 10.1371/journal.pone.0213679.
|
[57]
|
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226.
|
[58]
|
T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004.
|
[59]
|
X. Zhu, Persistent homology: An introduction and a new text representation for natural language processing, in Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
|
[60]
|
A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete Comput. Geom., 33 (2005), 249-274.
doi: 10.1007/s00454-004-1146-y.
|