\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Smart Gradient - An adaptive technique for improving gradient estimation

  • * Corresponding author: Esmail Abdul Fattah

    * Corresponding author: Esmail Abdul Fattah 
Abstract / Introduction Full Text(HTML) Figure(5) / Table(1) Related Papers Cited by
  • Computing the gradient of a function provides fundamental information about its behavior. This information is essential for several applications and algorithms across various fields. One common application that requires gradients are optimization techniques such as stochastic gradient descent, Newton's method and trust region methods. However, these methods usually require a numerical computation of the gradient at every iteration of the method which is prone to numerical errors. We propose a simple limited-memory technique for improving the accuracy of a numerically computed gradient in this gradient-based optimization framework by exploiting (1) a coordinate transformation of the gradient and (2) the history of previously taken descent directions. The method is verified empirically by extensive experimentation on both test functions and on real data applications. The proposed method is implemented in the $\texttt{R} $ package $ \texttt{smartGrad}$ and in C$ \texttt{++} $.

    Mathematics Subject Classification: Primary: 03-08; Secondary: 62-08.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  2-dimensional Rosenbrock Function and a contour plot around the point p (-0.29, 0.4). At the same point p, the MSE and magnitude of gradient are plotted using different directions

    Figure 2.  Directions used to compute Vanilla Gradient (black) - Smart Gradient (iteration 1 - red) and Smart Gradient (iteration 2 - blue)

    Figure 3.  MSE for Smart and Vanilla Gradients at each iteration using Different Dimensional Rosenbrock and Roth Functions

    Figure 4.  MSE and computational time (to reach optimum) as the function of step-size for different dimensional Rosenbrock Function

    Figure 5.  Triangulated mesh with 1000 locations on the unit square

    Table 1.  The average MSE when using Vanilla and Smart Gradient approaches compared to the exact gradient for different dimensional Rosenbrock and Roth functions

    $ \pmb x $ dimension Average MSE Vanilla Gradient Average MSE Smart Gradient Improvement
    Extended Rosenbrock Function
    5 2.60e-04 1.04e-04 2.5
    10 2.71e-04 0.78e-04 3.47
    25 2.80e-04 0.49e-04 5.71
    Extended Freudenstein Roth Function
    5 2.26e-04 1.39e-04 1.63
    10 2.78e-04 1.42e-04 1.96
    25 2.84e-04 1.25e-04 2.27
     | Show Table
    DownLoad: CSV
  • [1] H. Bakka, H. Rue, G.-A. Fuglstad, A. Riebler and D. Bolin, et al., Spatial modeling with R-INLA: A review, Wiley Interdiscip. Rev. Comput. Stat., 10 (2018), 24pp. doi: 10.1002/wics.1443.
    [2] J. Besag, Statistical analysis of non-lattice data, J. R. Stat. Soc. Ser. D Statist., 24 (1975), 179-195.  doi: 10.2307/2987782.
    [3] J. S. Depner and T. C. Rasmussen, Hydrodynamics of Time-Periodic Groundwater Flow: Diffusion Waves in Porous Media, Geophysical Monograph Series, John Wiley & Sons, 2016. doi: 10.1002/9781119133957.
    [4] R. Fletcher, Practical Methods of Optimization, 2$^{nd}$ edition, John Wiley & Sons, Ltd., Chichester, 1987.
    [5] F. LindgrenH. Rue and J. Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B Stat. Methodol., 73 (2011), 423-498.  doi: 10.1111/j.1467-9868.2011.00777.x.
    [6] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer-Verlag, New York, 1999. doi: 10.1007/b98874.
    [7] V. PichenyT. Wagner and D. Ginsbourger, A benchmark of kriging-based infill criteria for noisy optimization, Struct. Multidiscip. Optim., 48 (2013), 607-626.  doi: 10.1007/s00158-013-0919-4.
    [8] H. RueS. Martino and N. Chopin, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, J. R. Stat. Soc. Ser. B Stat. Methodol., 71 (2009), 319-392.  doi: 10.1111/j.1467-9868.2008.00700.x.
    [9] H. Rue, A. Riebler, S. H. Sørbye, J. B. Illian, D. P. Simpson and F. K. Lindgren, Bayesian computing with INLA: A review, preprint, 2016, arXiv: 1604.00860.
    [10] G. Thomas, M. Weir, J. Hass and F. T. Giordano, Calculus Early Transcendentals, 11$^{th}$ edition, Thomas Series, 2005.
  • 加载中

Figures(5)

Tables(1)

SHARE

Article Metrics

HTML views(2135) PDF downloads(235) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return