[1]
|
H. D. I. Abarbanel, P. J. Rozdeba and S. Shirman, Machine learning: Deepest learning as statistical data assimilation problems, Neural Computation, 30 (2018), 2025-2055.
doi: 10.1162/neco_a_01094.
|
[2]
|
M. Ades and P. J. van Leeuwen, An exploration of the equivalent weights particle filter, Quarterly Journal of the Royal Meteorological Society, 139 (2013), 820-840.
doi: 10.1002/qj.1995.
|
[3]
|
A. Alexanderian, N. Petra, G. Stadler and O. Ghattas, A fast and scalable method for A-optimal design of experiments for infinite-dimensional bayesian nonlinear inverse problems, SIAM Journal on Scientific Computing, 38 (2016), A243-A272.
doi: 10.1137/140992564.
|
[4]
|
S. Amari, Backpropagation and stochastic gradient descent method, Neurocomputing, 5 (1993), 185-196.
doi: 10.1016/0925-2312(93)90006-O.
|
[5]
|
M. Asch, M. Bocquet and M. Nodet, Data Assimilation: Methods, Algorithms, and Applications, SIAM, 2016.
doi: 10.1137/1.9781611974546.
|
[6]
|
P. Bauer, B. Stevens and W. Hazeleger, A digital twin of Earth for the green transition, Nature Climate Change, 11 (2021), 80-83.
doi: 10.1038/s41558-021-00986-y.
|
[7]
|
A. Bobrowski, Functional Analysis for Probability and Stochastic Process, Cambridge University Press, 2005.
doi: 10.1017/CBO9780511614583.
|
[8]
|
M. Bocquet, J. Brajard, A. Carrassi and L. Bertino, Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization, Foundations of Data Science, 2 (2020), 55-80.
doi: 10.3934/fods.2020004.
|
[9]
|
J. Brajard, A. Carrassi, M. Bocquet and L. Bertino, Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, Journal of Computational Science, 44 (2020), 101171, 11 pp.
doi: 10.1016/j.jocs.2020.101171.
|
[10]
|
F. Burden and D. Winkler, Bayesian regularization of neural networks, In D. J. Livingstone, editor, Artificial Neural Networks: Methods and Applications, 23-42. Humana Press, Totowa, NJ, 2009.
doi: 10.1007/978-1-60327-101-1_3.
|
[11]
|
M. Chantry, H. Christensen, P. Dueben and T. Palmer, Opportunities and challenges for machine learning in weather and climate modelling: Hard, medium and soft ai, Philosophical Transactions of the Royal Society A, 379 (2021), 20200083.
doi: 10.1098/rsta.2020.0083.
|
[12]
|
B. Crestel, A. Alexanderian, G. Stadler and O. Ghattas, A-optimal encoding weights for nonlinear inverse problems, with application to the Helmholtz inverse problem, Inverse Problems, 33 (2017), 074008.
doi: 10.1088/1361-6420/aa6d8e.
|
[13]
|
R. Durrett, Probability: Theory and Examples, Cambridge University press, 2019.
doi: 10.1017/9781108591034.
|
[14]
|
O. G. Ernst, B. Sprungk and H.-J. Starkloff, Bayesian inverse problems and Kalman filters, In Extraction of Quantifiable Information from Complex Systems, 133-159. Springer, 2014.
doi: 10.1007/978-3-319-08159-5_7.
|
[15]
|
G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer Berlin Heidelberg, 2009.
doi: 10.1007/978-3-642-03711-5.
|
[16]
|
D. J. Gagne II, H. M. Christensen, A. C. Subramanian and A. H. Monahan, Machine learning for stochastic parameterization: Generative adversarial networks in the Lorenz '96 model, Journal of Advances in Modeling Earth Systems, 12 (2020), e2019MS001896.
doi: 10.1029/2019MS001896.
|
[17]
|
G. Gaspari and S. E. Cohn, Construction of correlation functions in two and three dimensions, Quarterly Journal of the Royal Meteorological Society, 125 (1999), 723-757.
doi: 10.1002/qj.49712555417.
|
[18]
|
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT press, 2016.
|
[19]
|
H. Hoel, K. J. H. Law and R. Tempone, Multilevel ensemble Kalman filtering, SIAM Journal on Numerical Analysis, 54 (2016), 1813-1839.
doi: 10.1137/15M100955X.
|
[20]
|
P. L. Houtekamer and H. L. Mitchell, Data assimilation using an ensemble Kalman filter technique, Monthly Weather Review, 126 (1998), 796-811.
doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.
|
[21]
|
A. H. Jazwinski, Stochastic Processes and Filtering Theory, Courier Corporation, 2007.
|
[22]
|
R. E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82 (1960), 35-45.
doi: 10.1115/1.3662552.
|
[23]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980, 2014.
|
[24]
|
K. Law, A. Stuart and K. Zygalakis, Data Assimilation: A Mathematical Introduction, volume 214, Springer, 2015.
doi: 10.1007/978-3-319-20325-6.
|
[25]
|
K. J. H. Law, H. Tembine and R. Tempone, Deterministic mean-field ensemble Kalman filtering, SIAM Journal on Scientific Computing, 38 (2016), A1251-A1279.
doi: 10.1137/140984415.
|
[26]
|
Y. Lee and A. J. Majda, State estimation and prediction using clustered particle filters, Proceedings of the National Academy of Sciences, 113 (2016), 14609-14614.
doi: 10.1073/pnas.1617398113.
|
[27]
|
J. Lei and P. Bickel, A moment matching ensemble filter for nonlinear non-Gaussian data assimilation, Monthly Weather Review, 139 (2011), 3964-3973.
doi: 10.1175/2011MWR3553.1.
|
[28]
|
T. Lin and H. Zha, Riemannian manifold learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 (2008), 796-809.
doi: 10.1109/TPAMI.2007.70735.
|
[29]
|
E. N. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences, 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>>2.0.CO;2.
|
[30]
|
E. N. Lorenz, Predictability: A problem partly solved, In Proc. Seminar on Predictability, volume 1, 1996.
doi: 10.1017/CBO9780511617652.004.
|
[31]
|
E. N. Lorenz and K. A. Emanuel, Optimal sites for supplementary weather observations: Simulation with a small model, Journal of the Atmospheric Sciences, 55 (1998), 399-414.
doi: 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.
|
[32]
|
A. J. Majda and J. Harlim, Filtering Complex Turbulent Systems, Cambridge University Press, 2012.
doi: 10.1017/CBO9781139061308.
|
[33]
|
H. G. Matthies, E. Zander, B. V. Rosić and A. Litvinenko, Parameter estimation via conditional expectation: A Bayesian inversion, Advanced Modeling and Simulation in Engineering Sciences, 3 (2016), 1-21.
doi: 10.1186/s40323-016-0075-7.
|
[34]
|
S. Pathiraja, S. Reich and W. Stannat, Mckean–Vlasov SDEs in nonlinear filtering, SIAM Journal on Control and Optimization, 59 (2021), 4188-4215.
doi: 10.1137/20M1355197.
|
[35]
|
H. K. Pradhan, C. Völker, S. N. Losa, A. Bracher and L. Nerger, Global assimilation of ocean-color data of phytoplankton functional types: Impact of different data sets, Journal of Geophysical Research: Oceans, 125 (2020), e2019JC015586.
doi: 10.1029/2019JC015586.
|
[36]
|
A. Rasheed, O. San and T. Kvamsdal, Digital twin: Values, challenges and enablers from a modeling perspective, IEEE Access, 8 (2020), 21980-22012.
doi: 10.1109/ACCESS.2020.2970143.
|
[37]
|
S. Reich, A dynamical systems framework for intermittent data assimilation, BIT Numerical Mathematics, 51 (2011), 235-249.
doi: 10.1007/s10543-010-0302-4.
|
[38]
|
S. Reich, Data assimilation: The Schrödinger perspective, Acta Numerica, 28 (2019), 635-711.
doi: 10.1017/S0962492919000011.
|
[39]
|
S. Reich and C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press, 2015.
doi: 10.1017/CBO9781107706804.
|
[40]
|
S. Reich and C. J. Cotter, Ensemble filter techniques for intermittent data assimilation, In M. Cullen, M. A. Freitag, S. Kindermann, and R. Scheichl, editors, Large Scale Inverse Problems: Computational Methods and Applications in the Earth Sciences, 91-134. De Gruyter, 2013.
|
[41]
|
R. H. Reichle, Data assimilation methods in the earth sciences, Advances in Water Resources, 31 (2008), 1411-1418.
doi: 10.1016/j.advwatres.2008.01.001.
|
[42]
|
C. Soize and R. Ghanem, Probabilistic learning on manifolds constrained by nonlinear partial differential equations for small datasets, Computer Methods in Applied Mechanics and Engineering, 380 (2021), 113777.
doi: 10.1016/j.cma.2021.113777.
|
[43]
|
A. Spantini, R. Baptista and Y. Marzouk, Coupling techniques for nonlinear ensemble filtering, arXiv preprint, arXiv: 1907.00389, 2019.
|
[44]
|
Q. Tang, L. Mu, D. Sidorenko, H. Goessling, T. Semmler and L. Nerger, Improving the ocean and atmosphere in a coupled ocean-atmosphere model by assimilating satellite sea-surface temperature and subsurface profile data, Quarterly Journal of the Royal Meteorological Society, 146 (2020), 4014-4029.
doi: 10.1002/qj.3885.
|
[45]
|
P. J. van Leeuwen, H. R. Künsch, L. Nerger, R. Potthast and S. Reich, Particle filters for high-dimensional geoscience applications: A review, Quarterly Journal of the Royal Meteorological Society, 145 (2019), 2335-2365.
doi: 10.1002/qj.3551.
|
[46]
|
M. Verlaan and A. W. Heemink, Nonlinearity in data assimilation applications: A practical method for analysis, Monthly Weather Review, 129 (2001), 1578-1589.
doi: 10.1175/1520-0493(2001)129<1578:NIDAAA>2.0.CO;2.
|
[47]
|
S. Vetra-Carvalho, P. J. van Leeuwen, L. Nerger, A. Barth, M. U. Altaf, P. Brasseur, P. Kirchgessner and J.-M. Beckers, State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems, Tellus A: Dynamic Meteorology and Oceanography, 70 (2018), 1-43.
doi: 10.1080/16000870.2018.1445364.
|
[48]
|
J. Vondřejc and H. G. Matthies, Accurate computation of conditional expectation for highly nonlinear problems, SIAM/ASA Journal on Uncertainty Quantification, 7 (2019), 1349-1368.
doi: 10.1137/18M1196674.
|