[1]
|
A. Baddeley and R. Turner, spatstat: An R package for analyzing spatial point patterns, Journal of Statistical Software, 12 (2005), 1-42.
doi: 10.18637/jss.v012.i06.
|
[2]
|
U. Bauer, Ripser: Efficient computation of Vietoris-Rips persistence barcodes, Journal of Applied and Computational Topology, 5 (2021), 391-423.
doi: 10.1007/s41468-021-00071-5.
|
[3]
|
A. J. Blumberg, I. Gal, M. A. Mandell and M. Pancia, Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces, Foundations of Computational Mathematics, 14 (2014), 745-789.
doi: 10.1007/s10208-014-9201-4.
|
[4]
|
O. Bobrowski and P. Skraba, On the universality of random persistence diagrams, arXiv e-print, arXiv: 2207.03926, July 2022.
|
[5]
|
C. Bonferroni, Sulle medie multiple di potenze, Bollettino dell'Unione Matematica Italiana, 5 (1950), 267-270.
|
[6]
|
P. Bubenik, Statistical topological data analysis using persistence landscapes, The Journal of Machine Learning Research, 16 (2015), 77-102.
|
[7]
|
C. Cericola, I. Johnson, J. Kiers, M. Krock, J. Purdy and J. Torrence, Extending hypothesis testing with persistence homology to three or more groups, Involve, a Journal of Mathematics, 11 (2018), 27-51, arXiv: 1602.03760.
doi: 10.2140/involve.2018.11.27.
|
[8]
|
F. Chazal, B. Fasy, F. Lecci, B. Michel, A. Rinaldo and L. Wasserman, Robust topological inference: Distance to a measure and kernel distance, The Journal of Machine Learning Research, 18 (2017), Paper No. 159, 40 pp.
|
[9]
|
F. Chazal, B. Fasy, F. Lecci, B. Michel, A. Rinaldo and L. Wasserman, Subsampling methods for persistent homology, In International Conference on Machine Learning, 2015, 2143-2151.
|
[10]
|
F. Chazal, B. T. Fasy, F. Lecci, A. Rinaldo, A. Singh and L. Wasserman, On the bootstrap for persistence diagrams and landscapes, Modeling and Analysis of Information Systems, 20 (2013), 111-120, arXiv: 1311.0376.
doi: 10.18255/1818-1015-2013-6-111-120.
|
[11]
|
R. Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2022.
|
[12]
|
B. T. Fasy, A. Rinaldo and L. Wasserman, Stochastic convergence of persistence landscapes and silhouettes, Convergence, (1/25), 2014.
|
[13]
|
V. Fisikopoulos, A. Chalkis and contributors in file inst/AUTHORS, Volesti: Volume Approximation and Sampling of Convex Polytopes, 2021. R package version 1.1.2-2.
|
[14]
|
A. Genz, F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl and T. Hothorn, mvtnorm: Multivariate Normal and t Distributions, 2021. R package version 1.1-3.
|
[15]
|
K. Habel, R. Grasman, R. B. Gramacy, P. Mozharovskyi and D. C. Sterratt, Geometry: Mesh Generation and Surface Tessellation, 2022. R package version 0.4.6.1.
|
[16]
|
A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
|
[17]
|
Y. Hiraoka, T. Shirai and K. D. Trinh, Limit theorems for persistence diagrams, The Annals of Applied Probability, 28 (2018), 2740-2780.
doi: 10.1214/17-AAP1371.
|
[18]
|
Y. Hochberg, A sharper Bonferroni procedure for multiple tests of significance, Biometrika, 75 (1988), 800-802.
doi: 10.1093/biomet/75.4.800.
|
[19]
|
S. Holm, A simple sequentially rejective multiple test procedure, Scandinavian Journal of Statistics, (1979), 65-70.
|
[20]
|
K. Korthauer, P. K. Kimes, C. Duvallet, A. Reyes, A. Subramanian, M. Teng, C. Shukla, E. J. Alm and S. C. Hicks, A practical guide to methods controlling false discoveries in computational biology, Genome Biology, 20 (2019).
doi: 10.1186/s13059-019-1716-1.
|
[21]
|
E. H. Lloyd, Least squares estimation of location and scale parameter using order statistics, Biometrika, 39 (1952), 88-95.
doi: 10.1093/biomet/39.1-2.88.
|
[22]
|
Microsoft and S. Weston, DoParallel: Foreach Parallel Adaptor for the 'parallel' Package, 2022. R package version 1.0.17.
|
[23]
|
Microsoft and S. Weston, foreach: Provides Foreach Looping Construct, 2022. R package version 1.5.2.
|
[24]
|
Y. Mileyko, S. Mukherjee and J. Harer, Probability measures on the space of persistence diagrams, Inverse Problems, 27 (2011), 124007.
doi: 10.1088/0266-5611/27/12/124007.
|
[25]
|
M. Moore, On the estimation of a convex set, The Annals of Statistics, 12 (1984), 1090-1099.
doi: 10.1214/aos/1176346725.
|
[26]
|
E. Munch, K. Turner, P. Bendich, S. Mukherjee, J. Mattingly and J. Harer, Probabilistic Fréchet means for time varying persistence diagrams, Electronic Journal of Statistics, 9 (2015), 1173-1204.
doi: 10.1214/15-EJS1030.
|
[27]
|
T. Nichols and S. Hayasaka, Controlling the familywise error rate in functional neuroimaging: A comparative review, Stat Methods Med Res., 12 (2003), 419-446.
doi: 10.1191/0962280203sm341ra.
|
[28]
|
B. Phipson and G. K. Smyth, Permutation p-values should never be zero: Calculating exact p-values when permutations are randomly drawn, Statistical Applications in Genetics and Molecular Biology, 9 (2010), Art. 39, 14 pp.
doi: 10.2202/1544-6115.1585.
|
[29]
|
J. P. Rasson, Estimation de formes convexes du plan, Statistiques et Analyse des données, (1979), 31-46.
|
[30]
|
B. D. Ripley and J.-P. Rasson, Finding the edge of a Poisson forest, Journal of Applied Probability, 14 (1977), 483-491.
doi: 10.2307/3213451.
|
[31]
|
A. Robinson and K. Turner, Hypothesis testing for topological data analysis, Journal of Applied and Computational Topology, 1 (2017), 241-261.
doi: 10.1007/s41468-017-0008-7.
|
[32]
|
K. Turner, Medians of sets of persistence diagrams, Homology, Homotopy and Applications, 22 (2020), 255-282, arXiv: 1307.8300.
doi: 10.4310/HHA.2020.v22.n1.a15.
|
[33]
|
K. Turner, Y. Mileyko, S. Mukherjee and J. Harer, Fréchet means for distributions of persistence diagrams, Discrete & Computational Geometry, 52 (2014), 44-70.
doi: 10.1007/s00454-014-9604-7.
|
[34]
|
K. Turner, S. Mukherjee and D. M. Boyer, Sufficient statistics for shapes and surfaces, Annals of Statistics, 2013.
|
[35]
|
M. Vejdemo-Johansson and A. Leshchenko, Certified mapper: Repeated testing for acyclicity and obstructions to the nerve lemma, In Topological Data Analysis, volume 15 of Abel Symposia, Springer, 2020,491-515.
doi: 10.1007/978-3-030-43408-3_19.
|
[36]
|
R. Wadhwa, M. Piekenbrock, J. Scott, J. C. Brunson and X. Zhang, ripserr: Calculate Persistent Homology with Ripser-Based Engines, 2022. R package version 0.2.0.
|
[37]
|
H. Wickham, M. Averick, J. Bryan, W. Chang, L. D'Agostino McGowan, R. François, G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson, D. Paige Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo and H. Yutani, Welcome to the tidyverse, Journal of Open Source Software, 4 (2019), 1686.
doi: 10.21105/joss.01686.
|