[1]
|
C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions, volume 100., New York: Springer, 1984.
doi: 10.1007/978-1-4612-1128-0.
|
[2]
|
S. A. Billings, Nonlinear System Identification, John Wiley & Sons, Ltd, Chichester, UK, 2013.
doi: 10.1002/9781118535561.
|
[3]
|
P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Springer, New York, 2nd edition, 1991.
doi: 10.1007/978-1-4419-0320-4.
|
[4]
|
O. Cappé, E. Moulines and T. Rydén, Inference in Hidden Markov Models, Springer Series in Statistics. Springer, New York; London, 2005.
|
[5]
|
J. A. Carrillo and G. Toscani, Wasserstein metric and large–time asymptotics of nonlinear diffusion equations, In New Trends in Mathematical Physics: In Honour of the Salvatore Rionero 70th Birthday, 234-244. World Scientific, 2004.
|
[6]
|
R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 7426-7431.
doi: 10.1073/pnas.0500334102.
|
[7]
|
F. Cucker and D.-X. Zhou, Learning Theory: An Approximation Theory Viewpoint, volume 24. Cambridge University Press, 2007.
doi: 10.1017/CBO9780511618796.
|
[8]
|
J. Fan and Q. Yao, Nonlinear Time Series: Nonparametric and Parametric Methods, Springer, New York, NY, 2003.
doi: 10.1007/b97702.
|
[9]
|
R. D. Fierro, G. H. Golub, P. C. Hansen and D. P. O'Leary, Regularization by truncated total least squares, SIAM J. Sci. Comput., 18 (1997), 1223-1241.
doi: 10.1137/S1064827594263837.
|
[10]
|
A. Friedman, Stochastic differential equations and applications, In Stochastic Differential Equations, 75-148. Springer, 2010.
doi: 10.1007/978-3-642-11079-5_2.
|
[11]
|
C. Gelada, S. Kumar, J. Buckman, O. Nachum and M. G. Bellemare, DeepMDP: Learning continuous latent space models for representation learning, arXiv: 1906.2736, Cs Stat, 2019.
|
[12]
|
A. Ghosh, S. Mukhopadhyay, S. Roy and S. Bhattacharya, Bayesian inference in nonparametric dynamic state space models, Statistical Methodology, 21 (2014), 35-48.
doi: 10.1016/j.stamet.2014.02.004.
|
[13]
|
N. Guglielmi and E. Hairer, Classification of hidden dynamics in discontinuous dynamical systems, SIAM J. Appl. Dyn. Syst., 14 (2015), 1454-1477.
doi: 10.1137/15100326X.
|
[14]
|
L. Györfi, M. Kohler, A. Krzyzak and H. Walk, A Distribution-Free Theory of Nonparametric Regression, Springer Science & Business Media, 2006.
|
[15]
|
D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee and J. Davidson, Learning Latent dynamics for planning from pixels, arXiv: 1811.4551, Cs Stat, 2019.
|
[16]
|
P. C. Hansen, The L-curve and its use in the numerical treatment of inverse problems, In in Computational Inverse Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering, 119-142. WIT Press, 2000.
|
[17]
|
M. R. Jeffrey, Hidden Dynamics: The Mathematics of Switches, Decisions and Other Discontinuous Behaviour, Springer International Publishing, Cham, 2018.
doi: 10.1007/978-3-030-02107-8.
|
[18]
|
L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine, A. Mohiuddin, R. Sepassi, G. Tucker and H. Michalewski, Model-Based Reinforcement Learning for Atari, arXiv: 1903.0374, Cs Stat, 2020.
|
[19]
|
N. Kantas, A. Doucet, S. S. Singh and J. M. Maciejowski, An overview of sequential Monte Carlo methods for parameter estimation in general state-space models, IFAC Proc. Vol., 42 (2009), 774-785.
doi: 10.3182/20090706-3-FR-2004.00129.
|
[20]
|
N. Kolbe, Wasserstein distance, https://github.com/nklb/wasserstein-distance, 2020.
|
[21]
|
Q. Lang and F. Lu, Identifiability of interaction kernels in mean-field equations of interacting particles, arXiv preprint, arXiv: 2106.05565, 2021.
|
[22]
|
K. Law, A. Stuart and K. Zygalakis, Data Assimilation: A Mathematical Introduction, Springer, 2015.
doi: 10.1007/978-3-319-20325-6.
|
[23]
|
Z. Li, F. Lu, M. Maggioni, S. Tang and C. Zhang, On the identifiability of interaction functions in systems of interacting particles, Stochastic Processes and their Applications, 132 (2021), 135-163.
doi: 10.1016/j.spa.2020.10.005.
|
[24]
|
L. Ljung, System identification, In Signal Analysis and Prediction, 163-173. Springer, 1998.
doi: 10.1007/978-1-4612-1768-8_11.
|
[25]
|
F. Lu, Q. Lang and Q. An, Data adaptive RKHS Tikhonov regularization for learning kernels in operators, arXiv preprint, arXiv: 2203.03791, 2022.
|
[26]
|
F. Lu, M. Zhong, S. Tang and M. Maggioni, Nonparametric inference of interaction laws in systems of agents from trajectory data, Proc. Natl. Acad. Sci. USA, 116 (2019), 14424-14433.
doi: 10.1073/pnas.1822012116.
|
[27]
|
T. Lyche, C. Manni and H. Speleers, Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement, Splines and PDEs: From Approximation Theory to Numerical Linear Algebra, volume 2219, Springer International Publishing, Cham, 2018, 1-76.
|
[28]
|
C. Moosmüller, F. Dietrich and I. G. Kevrekidis, A geometric approach to the transport of discontinuous densities, arXiv: 1907.8260, Phys. Stat, 2019.
|
[29]
|
V. M. Panaretos and Y. Zemel, Statistical aspects of wasserstein distances, Annual Review of Statistics and its Application, 6 (2019), 405-431.
doi: 10.1146/annurev-statistics-030718-104938.
|
[30]
|
L. Piegl and W. Tiller, The NURBS Book, Monographs in Visual Communication, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.
|
[31]
|
Y. Pokern, A. M. Stuart and P. Wiberg, Parameter estimation for partially observed hypoelliptic diffusions, J. R. Stat. Soc. Ser. B Stat. Methodol., 71 (2009), 49-73.
doi: 10.1111/j.1467-9868.2008.00689.x.
|
[32]
|
B. L. S. Prakasa Rao, Statistical inference from sampled data for stochastic processes, In N. U. Prabhu, editor, Contemporary Mathematics, volume 80,249-284. American Mathematical Society, Providence, Rhode Island, 1988.
doi: 10.1090/conm/080/999016.
|
[33]
|
A. Rahimi and B. Recht, Unsupervised regression with applications to nonlinear system identification, In Advances in Neural Information Processing Systems, (2007), 1113-1120.
|
[34]
|
M. Sørensen, Estimating functions for diffusion-type processes, In Statistical Methods for Stochastic Differential Equations, volume 124, 1-107. Monogr. Statist. Appl. Probab, 2012.
doi: 10.1201/b12126-2.
|
[35]
|
H. Sun, Mercer theorem for RKHS on noncompact sets, Journal of Complexity, 21 (2005), 337-349.
doi: 10.1016/j.jco.2004.09.002.
|
[36]
|
A. Svensson and T. B. Schön, A flexible state-space model for learning nonlinear dynamical systems, Automatica, 80 (2017), 189-199.
doi: 10.1016/j.automatica.2017.02.030.
|
[37]
|
F. Tobar, P. M. Djuric and D. P. Mandic, Unsupervised state-space modeling using reproducing kernels, IEEE Trans. Signal Process., 63 (2015), 5210-5221.
doi: 10.1109/TSP.2015.2448527.
|
[38]
|
F. X. F. Ye, S. Yang and M. Maggioni, Nonlinear model reduction for slow-fast stochastic systems near manifolds, 2021.
|