[1]
|
A. S. Baumgarten and K. Kamrin, A general constitutive model for dense, fine-particle suspensions validated in many geometries, Proc. Natl. Acad. Sci. USA, 116 (2019), 20828-20836.
doi: 10.1073/pnas.1908065116.
|
[2]
|
N. Bell, Y. Yu and P. J. Mucha, Particle-based simulation of granular materials, In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation - SCA '05, Los Angeles, California, 2005. ACM Press, 77-86.
doi: 10.1145/1073368.1073379.
|
[3]
|
C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions, volume 100. New York: Springer, 1984.
doi: 10.1007/978-1-4612-1128-0.
|
[4]
|
M. Bongini, M. Fornasier, M. Hansen and M. Maggioni, Inferring interaction rules from observations of evolutive systems Ⅰ: The variational approach, Mathematical Models and Methods in Applied Sciences, 27 (2017), 909-951.
doi: 10.1142/S0218202517500208.
|
[5]
|
J. A. Carrillo, K. Craig and Y. Yao, Aggregation-diffusion equations: Dynamics, asymptotics, and singular limits, In Active Particles, Volume 2, Springer, 2019, 65-108.
|
[6]
|
J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271.
doi: 10.1215/00127094-2010-211.
|
[7]
|
X. Chen, Maximum likelihood estimation of potential energy in interacting particle systems from single-trajectory data, Electron. Commun. Probab., 26 (2021), Paper No. 45, 13 pp. arXiv: 2007.11048, Math Stat, 2021.
doi: 10.1214/21-ecp416.
|
[8]
|
F. Cucker and D. X. Zhou, Learning Theory: An Approximation Theory Viewpoint, volume 24, Cambridge University Press, 2007.
doi: 10.1017/CBO9780511618796.
|
[9]
|
L. Della Maestra and M. Hoffmann, The LAN property for McKean-Vlasov models in a mean-field regime, Stochastic Process. Appl., 155 (2023), 109-146.
doi: 10.1016/j.spa.2022.10.002.
|
[10]
|
L. Della Maestra and M. Hoffmann, Nonparametric estimation for interacting particle systems: McKean–Vlasov models, Probability Theory and Related Fields, 182 (2022), 551-613.
doi: 10.1007/s00440-021-01044-6.
|
[11]
|
J. Fan and Q. Yao, Nonlinear Time Series: Nonparametric and Parametric Methods, Springer, New York, NY, 2003.
doi: 10.1007/b97702.
|
[12]
|
P. C. Hansen, Regularization Tools: A Matlab package for analysis and solution of discrete ill-posed problems, Numer Algor, 6 (1994), 1-35.
doi: 10.1007/BF02149761.
|
[13]
|
P. C. Hansen, The L-curve and its use in the numerical treatment of inverse problems, In Computational Inverse Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering, WIT Press, 2000, 119-142.
|
[14]
|
P.-E. Jabin and Z. Wang, Mean field limit for stochastic particle systems, In N. Bellomo, P. Degond, and E. Tadmor, editors, Active Particles, Volume 1, Springer International Publishing, Cham, 2017, 379-402.
|
[15]
|
P.-E. Jabin and Z. Wang, Quantitative estimates of propagation of chaos for stochastic systems with $w^{-1, \infty}$ kernels, Invent. Math., 214 (2018), 523-591.
doi: 10.1007/s00222-018-0808-y.
|
[16]
|
R. A. Kasonga, Maximum likelihood theory for large interacting systems, SIAM J. Appl. Math., 50 (1990), 865-875.
doi: 10.1137/0150050.
|
[17]
|
Q. Lang and F. Lu, Learning interaction kernels in mean-field equations of first-order systems of interacting particles, SIAM Journal on Scientific Computing, 44 (2022), A260-A285.
doi: 10.1137/20M1377072.
|
[18]
|
Z. Li and F. Lu, On the coercivity condition in the learning of interacting particle systems, arXiv preprint, arXiv: 2011.10480, 2020.
|
[19]
|
Z. Li, F. Lu, M. Maggioni, S. Tang and C. Zhang, On the identifiability of interaction functions in systems of interacting particles, Stochastic Processes and their Applications, 132 (2021), 135-163.
doi: 10.1016/j.spa.2020.10.005.
|
[20]
|
F. Lu, Q. Lang and Q. An, Data adaptive RKHS Tikhonov regularization for learning kernels in operators, Proceedings of Mathematical and Scientific Machine Learning, PMLR 190, 158-172, 2022.
|
[21]
|
F. Lu, M. Maggioni and S. Tang, Learning interaction kernels in heterogeneous systems of agents from multiple trajectories, Journal of Machine Learning Research, 22 (2021), 1-67.
|
[22]
|
F. Lu, M. Maggioni and S. Tang, Learning interaction kernels in stochastic systems of interacting particles from multiple trajectories, Foundations of Computational Mathematics, 22 (2022), 1013-1067.
doi: 10.1007/s10208-021-09521-z.
|
[23]
|
F. Lu, M. Zhong, S. Tang and M. Maggioni, Nonparametric inference of interaction laws in systems of agents from trajectory data, Proceedings of the National Academy of Sciences of the United States of America, 116 (2019), 14424-14433.
doi: 10.1073/pnas.1822012116.
|
[24]
|
F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., 13 (2003), 540-560.
doi: 10.1214/aoap/1050689593.
|
[25]
|
S. Méléard, Asymptotic Behaviour of Some Interacting Particle Systems; McKean-Vlasov and Boltzmann Models, volume 1627, Springer Berlin Heidelberg, Berlin, Heidelberg, 1996, 42-95.
doi: 10.1007/BFb0093177.
|
[26]
|
S. Mostch and E. Tadmor, Heterophilious dynamics enhances consensus, Siam Review, 56 (2014), 577-621.
doi: 10.1137/120901866.
|
[27]
|
C. E. Rasmussen, Gaussian processes in machine learning, In Summer School on Machine Learning, Springer, 2003, 63-71.
|
[28]
|
L. Sharrock, N. Kantas, P. Parpas and G. A. Pavliotis, Parameter estimation for the McKean-Vlasov stochastic differential equation, arXiv preprint, arXiv: 2106.13751, 2021.
|
[29]
|
H. Sun, Mercer theorem for RKHS on noncompact sets, Journal of Complexity, 21 (2005), 337-349.
doi: 10.1016/j.jco.2004.09.002.
|
[30]
|
A.-S. Sznitman, Topics in Propagation of Chaos, volume 1464, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, 165-251.
doi: 10.1007/BFb0085169.
|
[31]
|
T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004.
|
[32]
|
R. Yao, X. Chen, and Y. Yang, Mean-field nonparametric estimation of interacting particle systems, arXiv preprint, arXiv: 2205.07937, 2022.
|