[1]
|
P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting, Springer, 2016.
doi: 10.1007/978-3-319-29854-2.
|
[2]
|
B. Buttingsrud and B. K. Alsberg, A new maximum entropy-based method for deconvolution of spectra with heteroscedastic noise, Journal of Chemometrics, 18 (2004), 537-547.
doi: 10.1002/cem.898.
|
[3]
|
N. Chopin and O. Papaspiliopoulos, An Introduction to Sequential Monte Carlo, Springer Series in Statistics. Springer, 2020.
doi: 10.1007/978-3-030-47845-2.
|
[4]
|
H. Cui, G. Xia, S. Jin, L. Cheng, L. Bai, L. Ma and Y. Fang, Levenberg-Marquardt algorithm with adaptive Tikhonov regularization for bandwidth correction of spectra, Journal of Modern Optics, 67 (2020), 661-670.
doi: 10.1080/09500340.2020.1766590.
|
[5]
|
H.-D. Dau and N. Chopin, Waste-free sequential Monte Carlo, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 84 (2022), 114-148.
doi: 10.1111/rssb.12475.
|
[6]
|
P. Del Moral, A. Doucet and A. Jasra, Sequential Monte Carlo samplers, Journal of the Royal Statistical Society: Series B, 68 (2006), 411-436.
doi: 10.1111/j.1467-9868.2006.00553.x.
|
[7]
|
P. Del Moral, A. Doucet and A. Jasra, An adaptive sequential Monte Carlo method for approximate Bayesian computation, Statistics and Computing, 22 (2012), 1009-1020.
doi: 10.1007/s11222-011-9271-y.
|
[8]
|
M. Diem, Modern Vibrational Spectroscopy and Micro-Spectroscopy: Theory, Instrumentation and Biomedical Applications, John Wiley & Sons, 2015.
doi: 10.1002/9781118824924.
|
[9]
|
P. J. Diggle, P. Moraga, B. Rowlingson and B. M. Taylor, Spatial and spatio-temporal log-Gaussian Cox processes: Extending the geostatistical paradigm, Statistical Science, 28 (2013), 542-563.
doi: 10.1214/13-STS441.
|
[10]
|
J. J. Freeman, A. Wang, K. E. Kuebler, B. L. Jolliff and L. A. Haskin, Characterization of natural feldspars by Raman spectroscopy for future planetary exploration, The Canadian Mineralogist, 46 (2008), 1477-1500.
doi: 10.3749/canmin.46.6.1477.
|
[11]
|
K. B. Frøhling, T. S. Alstrøm, M. Bache, M. S. Schmidt, M. N. Schmidt, J. Larsen, M. H. Jakobsen and A. Boisen, Surface-enhanced Raman spectroscopic study of DNA and 6-mercapto-1-hexanol interactions using large area mapping, Vibrational Spectroscopy, 86 (2016), 331-336.
doi: 10.1016/j.vibspec.2016.08.005.
|
[12]
|
S. Gulam Razul, W. J. Fitzgerald and C. Andrieu, Bayesian model selection and parameter estimation of nuclear emission spectra using RJMCMC, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 497 (2003), 492-510.
doi: 10.1016/S0168-9002(02)01807-7.
|
[13]
|
T. Härkönen, L. Roininen, M. T. Moores and E. M. Vartiainen, Bayesian quantification for coherent anti-Stokes Raman scattering spectroscopy, The Journal of Physical Chemistry B, 124 (2020), 7005-7012.
doi: 10.1021/acs.jpcb.0c04378.
|
[14]
|
J. K. Kauppinen, D. J. Moffatt, M. R. Hollberg and H. H. Mantsch, A new line-narrowing procedure based on Fourier self-deconvolution, maximum entropy, and linear prediction, Applied Spectroscopy, 45 (1991), 411-416.
doi: 10.1366/0003702914337155.
|
[15]
|
J. K. Kauppinen, D. J. Moffatt and H. H. Mantsch, Nonlinearity of the maximum entropy method in resolution enhancement, Canadian Journal of Chemistry, 70 (1992), 2887-2894.
doi: 10.1139/v92-369.
|
[16]
|
J. K. Kauppinen, D. J. Moffatt, H. H. Mantsch and D. G. Cameron, Fourier self-deconvolution: A method for resolving intrinsically overlapped bands, Applied Spectroscopy, 35 (1981), 271-276.
doi: 10.1366/0003702814732634.
|
[17]
|
J. Kauppinen and J. Partanen, Fourier Transforms in Spectroscopy, Wiley, Berlin, 2001.
doi: 10.1002/3527600299.
|
[18]
|
B. Lafuente, R. T. Downs, H. Yang and N. Stone, The power of databases: the RRUFF project, In T. Armbruster and R. M. Danisi, editors, Highlights in Mineralogical Crystallography, 1-30. W. De Gruyter, 2015.
doi: 10.1515/9783110417104-003.
|
[19]
|
G. Last and M. D. Penrose, Lectures on the Poisson Process, Cambridge University Press, 2017.
doi: 10.1017/9781316104477.
|
[20]
|
D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, 45 (1989), 503-528.
doi: 10.1007/BF01589116.
|
[21]
|
H. Liu, L. Yan, Y. Chang, H. Fang and T. Zhang, Spectral deconvolution and feature extraction with robust adaptive Tikhonov regularization, IEEE Transactions on Instrumentation and Measurement, 62 (2013), 315-327.
doi: 10.1109/TIM.2012.2217636.
|
[22]
|
V. A. Lórenz-Fonfría and E. Padrós, Maximum entropy deconvolution of infrared spectra: Use of a novel entropy expression without sign restriction, Applied Spectroscopy, 59 (2005), 474-486.
doi: 10.1366/0003702053641504.
|
[23]
|
J. McLeod and F. Simpson, Validating Gaussian process models with simulation-based calibration, In 2021 IEEE International Conference on Artificial Intelligence Testing (AITest), 101-102.
doi: 10.1109/AITEST52744.2021.00028.
|
[24]
|
J. Møller, A. R. Syversveen and R. P. Waagepetersen, Log Gaussian Cox processes, Scandinavian Journal of Statistics, 25 (1998), 451-482.
doi: 10.1111/1467-9469.00115.
|
[25]
|
M. T. Moores, J. Carson, K. Gracie, K. Faulds, D. Graham and M. Girolami, Bayesian modelling and quantification of Raman spectroscopy, 2016, arXiv preprint, arXiv: 1604.07299.
|
[26]
|
J. G. Rasmussen, Bayesian inference for Hawkes processes, Methodology and Computing in Applied Probability, 15 (2011), 623-642.
doi: 10.1007/s11009-011-9272-5.
|
[27]
|
C. Ritter, Statistical analysis of spectra from electron spectroscopy for chemical analysis, The Statistician, 43 (1994), 111-127.
doi: 10.2307/2348937.
|
[28]
|
S. Särkkä, Bayesian Filtering and Smoothing, Cambridge University Press, 2013.
doi: 10.1017/CBO9781139344203.
|
[29]
|
L. Serra, M. Saez, J. Mateu, D. Varga, P. Juan, C. Díaz-Ávalos and H. Rue, Spatio-temporal log-Gaussian Cox processes for modelling wildfire occurrence: The case of Catalonia, 1994-2008, Environmental and Ecological Statistics, 21 (2014), 531-563.
doi: 10.1007/s10651-013-0267-y.
|
[30]
|
S. Shirota and A. E. Gelfand, Space and circular time log Gaussian Cox processes with application to crime event data, The Annals of Applied Statistics, 11 (2017), 481-503.
doi: 10.1214/16-AOAS960.
|
[31]
|
E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach, 2$^nd$ edition, John Wiley & Sons, 2019.
doi: 10.1002/9781119440598.
|
[32]
|
R. H. Stewart, Introduction to Physical Oceanography, Texas A & M University, 2004.
|
[33]
|
J. Suuronen, M. Emzir, S. Lasanen, S. Särkkä and L. Roininen, Roininen, Enhancing industrial X-ray tomography by data-centric statistical methods, Data-Centric Engineering, 1 (2020), e10.
doi: 10.1017/dce.2020.10.
|
[34]
|
S. Talts, M. Betancourt, D. Simpson, A. Vehtari and A. Gelman, Validating Bayesian inference algorithms with simulation-based calibration, 2020., arXiv preprint, arXiv: 1804.06788.
|
[35]
|
J. Vanhatalo, J. Riihimäki, J. Hartikainen, P. Jylänki, V. Tolvanen and A. Vehtari, GPstuff: Bayesian modeling with Gaussian processes, Journal of Machine Learning Research, 14 (2013), 1175-1179.
|
[36]
|
I. I. Virtanen, H. W. Tesfaw, L. Roininen, S. Lasanen and A. Aikio, Bayesian filtering in incoherent scatter plasma parameter fits, Journal of Geophysical Research: Space Physics, 126 (2021), e2020JA028700.
doi: 10.1029/2020JA028700.
|
[37]
|
P. Whittle, Estimation and information in stationary time series, Arkiv för Matematik, 2 (1953), 423-434.
doi: 10.1007/BF02590998.
|