[1]
|
M. Ahmed, Data summarization: A survey, Knowledge and Information Systems, 58 (2019), 249-273.
doi: 10.1007/s10115-018-1183-0.
|
[2]
|
W. K. Allard, G. Chen and M. Maggioni, Multi-scale geometric methods for data sets ⅱ: Geometric multi-resolution analysis, Applied and Computational Harmonic Analysis, 32 (2012), 435-462.
doi: 10.1016/j.acha.2011.08.001.
|
[3]
|
N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, 68 (1950), 337-404.
doi: 10.1090/S0002-9947-1950-0051437-7.
|
[4]
|
L. M. Berliner, Hierarchical bayesian time series models, in Maximum Entropy and Bayesian Methods, Springer, 1996, 15-22.
|
[5]
|
A. Bermanis, A. Averbuch and R. R. Coifman, Multiscale data sampling and function extension, Applied and Computational Harmonic Analysis, 34 (2013), 15-29.
doi: 10.1016/j.acha.2012.03.002.
|
[6]
|
B. Bohn, J. Garcke and M. Griebel, A sparse grid based method for generative dimensionality reduction of high-dimensional data, Journal of Computational Physics, 309 (2016), 1-17.
doi: 10.1016/j.jcp.2015.12.033.
|
[7]
|
N. A. Borghese and S. Ferrari, Hierarchical rbf networks and local parameters estimate, Neurocomputing, 19 (1998), 259-283.
doi: 10.1016/S0925-2312(97)00094-5.
|
[8]
|
Z. Borsos, M. Mutnỳ, M. Tagliasacchi and A. Krause, Data summarization via bilevel optimization, arXiv preprint, arXiv: 2109.12534.
|
[9]
|
W. L. Briggs, V. E. Henson and S. F. McCormick, A Multigrid Tutorial, vol. 72, SIAM, 2000.
doi: 10.1137/1.9780898719505.
|
[10]
|
M. D. Buhmann, Radial Basis Functions: Theory and Implementations, vol. 12, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511543241.
|
[11]
|
D. Chaudhuri, C. A. Murthy and B. B. Chaudhuri, Finding a subset of representative points in a data set, IEEE Transactions on Systems, Man, and Cybernetics, 24 (1994), 1416-1424.
doi: 10.1109/21.310520.
|
[12]
|
G. Chen, A. V. Little and M. Maggioni, Multi-resolution geometric analysis for data in high dimensions, in Excursions in Harmonic Analysis, Volume 1, Springer, 2013,259-285.
doi: 10.1007/978-0-8176-8376-4_13.
|
[13]
|
R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods, Proceedings of the National Academy of Sciences, 102 (2005), 7432-7437.
doi: 10.1073/pnas.0500896102.
|
[14]
|
R. R. Coifman and M. Maggioni, Diffusion Wavelets, Applied and Computational Harmonic Analysis, 21 (2006), 53-94.
doi: 10.1016/j.acha.2006.04.004.
|
[15]
|
N. Cressie and C. K. Wikle, Statistics for Spatio-Temporal Data, John Wiley & Sons, 2015.
|
[16]
|
I. Czarnowski and P. Jedrzejowicz, An approach to data reduction for learning from big datasets: Integrating stacking, rotation, and agent population learning techniques, Complexity, 2018.
doi: 10.1155/2018/7404627.
|
[17]
|
I. Daubechies, Ten Lectures on Wavelets, vol. 61, SIAM, 1992.
doi: 10.1137/1.9781611970104.
|
[18]
|
C. De Boor, A Practical Guide to Splines, vol. 27, springer-verlag New York, 1978.
|
[19]
|
S. De Marchi and R. Schaback, Stability of kernel-based interpolation, Advances in Computational Mathematics, 32 (2010), 155-161.
doi: 10.1007/s10444-008-9093-4.
|
[20]
|
P. H. C. Eilers and B. D. Marx, Flexible smoothing with b-splines and penalties, Statistical Science, 11 (1996), 89-121.
doi: 10.1214/ss/1038425655.
|
[21]
|
M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer Science & Business Media, 2010.
doi: 10.1007/978-1-4419-7011-4.
|
[22]
|
D. Elbrächter, D. Perekrestenko, P. Grohs and H. Bölcskei, Deep neural network approximation theory, IEEE Transactions on Information Theory, 67 (2021), 2581-2623.
doi: 10.1109/TIT.2021.3062161.
|
[23]
|
T. Evgeniou, M. Pontil and T. Poggio, Regularization networks and support vector machines, Advances in Computational Mathematics, 13 (2000), 1-50.
doi: 10.1023/A:1018946025316.
|
[24]
|
G. E. Fasshauer and J. G. Zhang, Preconditioning of radial basis function interpolation systems via accelerated iterated approximate moving least squares approximation, in Progress on Meshless Methods, Springer, 2009, 57-75.
doi: 10.1007/978-1-4020-8821-6_4.
|
[25]
|
S. Ferrari, M. Maggioni and N. A. Borghese, Multiscale approximation with hierarchical radial basis functions networks, IEEE Transactions on Neural Networks, 15 (2004), 178-188.
doi: 10.1109/TNN.2003.811355.
|
[26]
|
F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, Springer Science & Business Media, 2006.
|
[27]
|
M. S. Floater and A. Iske, Multistep scattered data interpolation using compactly supported radial basis functions, Journal of Computational and Applied Mathematics, 73 (1996), 65-78.
doi: 10.1016/0377-0427(96)00035-0.
|
[28]
|
M. R. Forster, Key concepts in model selection: Performance and generalizability, Journal of Mathematical Psychology, 44 (2000), 205-231.
doi: 10.1006/jmps.1999.1284.
|
[29]
|
M. Galun, R. Basri and I. Yavneh, Review of methods inspired by algebraic-multigrid for data and image analysis applications, Numerical Mathematics: Theory, Methods and Applications, 8 (2015), 283-312.
doi: 10.4208/nmtma.2015.w14si.
|
[30]
|
G. H. Golub, M. Heath and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223.
doi: 10.1080/00401706.1979.10489751.
|
[31]
|
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT press, 2016.
|
[32]
|
P. J. Green and B. W. Silverman, Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach, CRC Press, 1993.
doi: 10.1007/978-1-4899-4473-3.
|
[33]
|
M. Griebel and A. Hullmann, A sparse grid based generative topographic mapping for the dimensionality reduction of high-dimensional data, in Modeling, Simulation and Optimization of Complex Processes-HPSC 2012, Springer, 2014, 51-62.
doi: 10.1007/978-3-319-09063-4_5.
|
[34]
|
T. Hastie, R. Tibshirani and M. Wainwright, Statistical Learning with Sparsity: The Lasso and Generalizations, Chapman and Hall/CRC, 2015.
|
[35]
|
T. Hsing and R. Eubank, Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators, John Wiley & Sons, 2015.
doi: 10.1002/9781118762547.
|
[36]
|
A. Iske, Scattered data approximation by positive definite kernel functions, Rend. Sem. Mat. Univ. Pol. Torino, 69 (2011), 217-246.
|
[37]
|
D. Kushnir, M. Galun and A. Brandt, Efficient multilevel eigensolvers with applications to data analysis tasks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (2009), 1377-1391.
doi: 10.1109/TPAMI.2009.147.
|
[38]
|
M. Maggioni, J. C. Bremer Jr, R. R. Coifman and A. D. Szlam, Biorthogonal diffusion wavelets for multiscale representation on manifolds and graphs, in Wavelets XI, vol. 5914, International Society for Optics and Photonics, 2005, 59141M.
doi: 10.1117/12.616909.
|
[39]
|
S. G. Mallat, A theory for multiresolution signal decomposition: The wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (1989), 674-693.
doi: 10.1515/9781400827268.494.
|
[40]
|
J. T. Oden and L. F. Demkowicz, Applied Functional Analysis, Chapman and Hall/CRC, 2017.
|
[41]
|
N. D. Pearce and M. P. Wand, Penalized splines and reproducing kernel methods, The American Statistician, 60 (2006), 233-240.
doi: 10.1198/000313006X124541.
|
[42]
|
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12 (2011), 2825-2830.
|
[43]
|
T. Poggio and F. Girosi, Networks for approximation and learning, Proceedings of the IEEE, 78 (1990), 1481-1497.
doi: 10.1109/5.58326.
|
[44]
|
T. Poggio and F. Girosi, Regularization algorithms for learning that are equivalent to multilayer networks, Science, 247 (1990), 978-982.
doi: 10.1126/science.247.4945.978.
|
[45]
|
C. E. Rasmussen, Gaussian processes in machine learning, in Summer School on Machine Learning, Springer, 2003, 63-71.
|
[46]
|
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, vol. 2, MIT press Cambridge, MA, 2006.
|
[47]
|
M. H. ur Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah and S. U. Khan, Big data reduction methods: A survey, Data Science and Engineering, 1 (2016), 265-284.
doi: 10.1007/s41019-016-0022-0.
|
[48]
|
D. Ruppert, M. P. Wand and R. J. Carroll, Semiparametric Regression, vol. 12, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511755453.
|
[49]
|
Y. Saad, Iterative Methods for Sparse Linear Systems, vol. 82, SIAM, 2003.
doi: 10.1137/1.9780898718003.
|
[50]
|
B. Schölkopf, A. J. Smola, F. Bach, et al., Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT press, 2002.
|
[51]
|
J. Schreiber, J. Bilmes and W. S. Noble, apricot: Submodular selection for data summarization in python, J. Mach. Learn. Res., 21 (2020), 6474-6479.
|
[52]
|
P. Shekhar and A. Patra, Hierarchical approximations for data reduction and learning at multiple scales, Foundations of Data Science, 2 (2020), 123-154.
doi: 10.3934/fods.2020008.
|
[53]
|
K. Stüben, A review of algebraic multigrid, in Numerical Analysis: Historical Developments in the 20th Century, Elsevier, 2001,331-359.
doi: 10.1016/B978-0-444-50617-7.50015-X.
|
[54]
|
S. Surjanovic and D. Bingham, Virtual library of simulation experiments: Test functions and datasets, Retrieved November 14, 2019, from http://www.sfu.ca/ ssurjano.
|
[55]
|
J. Tejada, M. Alexandrov, G. Skitalinskaya and D. Stefanovskiy, Selection of statistically representative subset from a large data set, in Iberoamerican Congress on Pattern Recognition, Springer, 2016,476-483.
doi: 10.1007/978-3-319-52277-7_58.
|
[56]
|
M. E. Tipping, The relevance vector machine, in Advances in Neural Information Processing Systems, 2000,652-658.
|
[57]
|
V. N. Vapnik, The Nature of Statistical Learning Theory, Springer Science & Business Media, 2013.
doi: 10.1007/978-1-4757-2440-0.
|
[58]
|
G. Wahba, Spline Models for Observational Data, vol. 59, SIAM, 1990.
doi: 10.1137/1.9781611970128.
|
[59]
|
H. Wendland, Scattered Data Approximation, vol. 17, Cambridge University Press, 2005.
|
[60]
|
A. A. Yıldırım, C. Özdoğan and D. Watson, Parallel data reduction techniques for big datasets, in Big Data: Concepts, Methodologies, Tools, and Applications, IGI Global, 2016,734-756.
doi: 10.4018/978-1-4666-9840-6.ch034.
|
[61]
|
S. Zhou, Sparse svm for sufficient data reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 44 (2022), 5560-5571.
doi: 10.1109/TPAMI.2021.3075339.
|