[1]
|
Y. Akhremtsev, T. Heuer, P. Sanders and S. Schlag, Engineering a direct $k$-way hypergraph partitioning algorithm, In 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments (ALENEX), SIAM, (2017), 28-42.
doi: 10.1137/1.9781611974768.3.
|
[2]
|
B. Ameneyro, V. Maroulas and G. Siopsis, Quantum persistent homology, arXiv preprint, arXiv: 2202.12965, 2022.
|
[3]
|
D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica, 15 (2006), 1-155.
doi: 10.1017/S0962492906210018.
|
[4]
|
G. Ausiello and L. Laura, Directed hypergraphs: Introduction and fundamental algorithms–A survey, Theoretical Computer Science, 658 (2017), 293-306.
doi: 10.1016/j.tcs.2016.03.016.
|
[5]
|
C. Berge, Hypergraphs: Combinatorics of Finite Sets, volume 45, Elsevier, 1984.
|
[6]
|
C. Berge and E. Minieka, Graphs and Hypergraphs, Graphs and Hypergraphs. North-Holland Publishing Company, 1973. ISBN 9780444103994. https://books.google.com.sg/books?id=X32GlVfqXjsC.
|
[7]
|
S. Bressan, J. Li, S. Ren and J. Wu, The embedded homology of hypergraphs and applications, Asian Journal of Mathematics, 23 (2019), 479-500.
doi: 10.4310/AJM.2019.v23.n3.a6.
|
[8]
|
P. Bubenik and P. Dłotko, A persistence landscapes toolbox for topological statistics, Journal of Symbolic Computation, 78 (2017), 91-114.
doi: 10.1016/j.jsc.2016.03.009.
|
[9]
|
Z. Cang and G.-W. Wei, Topologynet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLoS Computational Biology, 13 (2017), e1005690.
doi: 10.1371/journal.pcbi.1005690.
|
[10]
|
Z. Cang and G.-W. Wei, Persistent cohomology for data with multicomponent heterogeneous information, SIAM Journal on Mathematics of Data Science, 2 (2020), 396-418.
doi: 10.1137/19M1272226.
|
[11]
|
G. Carlsson, Topology and data, Bulletin of the American Mathematical Society, 46 (2009), 255-308.
doi: 10.1090/S0273-0979-09-01249-X.
|
[12]
|
D. Chen, J. Liu, J. Wu, G.-W. Wei, F. Pan and S.-T. Yau, Path topology in molecular and materials sciences, The Journal of Physical Chemistry Letters, 14 (2023), 954-964.
doi: 10.1021/acs.jpclett.2c03706.
|
[13]
|
J. Chen, Y. Qiu, R. Wang and G.-W. Wei, Persistent Laplacian projected Omicron BA.4 and BA.5 to become new dominating variants, Computers in Biology and Medicine, 151 (2022), 106262.
doi: 10.1016/j.compbiomed.2022.106262.
|
[14]
|
J. Chen, R. Zhao, Y. Tong and G.-W. Wei, Evolutionary de Rham-Hodge method, arXiv: 1912.12388, 2019.
doi: 10.48550/arXiv.1912.12388.
|
[15]
|
J. Chen, R. Zhao, Y. Tong and G.-W. Wei, Evolutionary de Rham-Hodge method, Discrete and Continuous Dynamical Systems. Series B, 26 (2021), 3785-3821.
doi: 10.3934/dcdsb.2020257.
|
[16]
|
M. Desbrun, A. N. Hirani, M. Leok and J. E. Marsden, Discrete exterior calculus, arXiv preprint, arXiv: math/0508341, 2005.
|
[17]
|
W. Dörfler and D. A. Waller, A category-theoretical approach to hypergraphs, Archiv der Mathematik, 34 (1980), 185-192.
doi: 10.1007/BF01224952.
|
[18]
|
H. Edelsbrunner and J. Harer, Persistent homology-a survey, Contemporary Mathematics, 453 (2008), 257-282.
doi: 10.1090/conm/453/08802.
|
[19]
|
T. Eiter and G. Gottlob, Hypergraph transversal computation and related problems in logic and AI, In Logics in Artificial Intelligence: 8th European Conference, JELIA 2002 Cosenza, Italy, September 23-26, 2002 Proceedings 8, 549-564. Springer, 2002.
doi: 10.1007/3-540-45757-7_53.
|
[20]
|
M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, 23 (1973), 298-305.
doi: 10.21136/CMJ.1973.101168.
|
[21]
|
G. Gallo, G. Longo, S. Pallottino and S. Nguyen, Directed hypergraphs and applications, Discrete Applied Mathematics, 42 (1993), 177-201.
doi: 10.1016/0166-218X(93)90045-P.
|
[22]
|
G. Gallo and M. G. Scutella, Directed hypergraphs as a modelling paradigm, Rivista di Matematica per le Scienze Economiche e Sociali, 21 (1998), 97-123.
doi: 10.1007/BF02735318.
|
[23]
|
A. Gomes and D. Miranda, Path cohomology of locally finite digraphs, Hodge's theorem and the $ p $-lazy random walk, arXiv preprint, arXiv: 1906.04781, 2019.
|
[24]
|
J. Grbic, J. Wu, K. Xia and G.-W. Wei, Aspects of topological approaches for data science, Foundations of Data Science, 4 (2022), 165-216.
doi: 10.3934/fods.2022002.
|
[25]
|
A. Grigor'yan, Y. Lin, Y. Muranov and S.-T. Yau, Homologies of path complexes and digraphs, arXiv preprint, arXiv: 1207.2834, 2013.
|
[26]
|
A. Grigor'yan, Y. Lin, Yu. V. Muranov and S. Yau, Path complexes and their homologies, Journal of Mathematical Sciences, 248 (2020), 564-599.
doi: 10.1007/s10958-020-04897-9.
|
[27]
|
A. Grigor'yan, Y. Muranov and S.-T. Yau, Homologies of digraphs and Künneth formulas, Communications in Analysis and Geometry, 25 (2017), 969-1018.
doi: 10.4310/CAG.2017.v25.n5.a4.
|
[28]
|
J. Hansen and R. Ghrist, Toward a spectral theory of cellular sheaves, Journal of Applied and Computational Topology, 3 (2019), 315-358.
doi: 10.1007/s41468-019-00038-7.
|
[29]
|
F. Harary and E. M. Palmer, Graphical Enumeration, Elsevier, 2014.
|
[30]
|
A. N. Hirani, Discrete Exterior Calculus, California Institute of Technology, 2003.
|
[31]
|
D. Horak and J. Jost, Spectra of combinatorial Laplace operators on simplicial complexes, Advances in Mathematics, 244 (2013), 303-336.
doi: 10.1016/j.aim.2013.05.007.
|
[32]
|
T. Kaczynski, K. M. Mischaikow and M. Mrozek, Computational Homology, volume 3., Springer, 2004.
doi: 10.1007/b97315.
|
[33]
|
G. Kirchhoff, Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird, Annalen der Physik, 148 (1847), 497-508.
doi: 10.1002/andp.18471481202.
|
[34]
|
J. Liu, J. Li and J. Wu, The algebraic stability for persistent Laplacians, arXiv preprint, arXiv: 2302.03902, 2023.
|
[35]
|
X. Liu, H. Feng, J. Wu and K. Xia, Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction, Briefings in Bioinformatics, 22 (2021), bbab127.
doi: 10.1093/bib/bbab127.
|
[36]
|
F. Mémoli, Z. Wan and Y. Wang, Persistent Laplacians: Properties, algorithms and implications, SIAM Journal on Mathematics of Data Science, 4 (2022), 858-884.
doi: 10.1137/21M1435471.
|
[37]
|
Z. Meng and K. Xia, Persistent spectral–based machine learning (PerSpect ML) for protein-ligand binding affinity prediction, Science Advances, 7 (2021), eabc5329.
doi: 10.1126/sciadv.abc5329.
|
[38]
|
Y. Muranov, A. Szczepkowska and V. Vershinin, Path homology of directed hypergraphs, Homology Homotopy Appl., 24 (2022), 347–363, arXiv preprint, arXiv: 2109.09842, 2021.
doi: 10.4310/HHA.2022.v24.n2.a18.
|
[39]
|
Y. Qiu and G.-W. Wei, Persistent spectral theory-guided protein engineering, Nature Computational Science, 3 (2023), 149-163.
doi: 10.1038/s43588-022-00394-y.
|
[40]
|
R. Qu, J. Wang, Z.-s. Li and Y.-R. Bao, Encoding hypergraphs into quantum states, Physical Review A, 87 (2013), 022311.
doi: 10.1103/PhysRevA.87.022311.
|
[41]
|
M. Ramaswamy, S. Sarkar and Y.-S. Chen, Using directed hypergraphs to verify rule-based expert systems, IEEE Transactions on Knowledge and Data Engineering, 9 (1997), 221-237.
doi: 10.1109/69.591448.
|
[42]
|
S. Ren, C. Wang, C. Wu and J. Wu, A discrete Morse theory for hypergraphs, arXiv preprint, arXiv: 1804.07132, 2020.
|
[43]
|
S. Ren, C. Wu and J. Wu, Hodge decompositions for weighted hypergraphs, arXiv preprint, arXiv: 1805.11331, 2018.
|
[44]
|
M. Thakur and R. Tripathi, Linear connectivity problems in directed hypergraphs, Theoretical Computer Science, 410 (2009), 2592-2618.
doi: 10.1016/j.tcs.2009.02.038.
|
[45]
|
J. Townsend, C. P. Micucci, J. H. Hymel, V. Maroulas and K. D. Vogiatzis., Representation of molecular structures with persistent homology for machine learning applications in chemistry, Nature Communications, 11 (2020), 3230.
doi: 10.1038/s41467-020-17035-5.
|
[46]
|
R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral graph, Int. J. Numer. Methods Biomed. Eng., 36 (2020), e3376, 27 pp, arXiv preprint, arXiv: 1912.04135, 2019.
doi: 10.1002/cnm.3376.
|
[47]
|
R. Wang and G.-W. Wei, Persistent path Laplacian, Foundations of Data Science, 5 (2023), 26-55.
doi: 10.3934/fods.2022015.
|
[48]
|
R. Wang, R. Zhao, E. Ribando-Gros, J. Chen, Y. Tong and G.-W. Wei, HERMES: Persistent spectral graph software, Foundations of Data Science, 3 (2021), 67-97.
doi: 10.3934/fods.2021006.
|
[49]
|
J. Wee, G. Bianconi and K. Xia, Persistent Dirac for molecular representation, Scientific Reports, 13 (2023), Article number: 11183, arXiv preprint, arXiv: 2302.02386, 2023.
doi: 10.1038/s41598-023-37853-z.
|
[50]
|
J. Wee and K. Xia, Persistent spectral based ensemble learning (PerSpect-EL) for protein–protein binding affinity prediction, Briefings in Bioinformatics, 23 (2022).
doi: 10.1093/bib/bbac024.
|
[51]
|
G.-W. Wei, Topological data analysis hearing the shapes of drums and bells, arXiv preprint, arXiv: 2301.05025, 2023.
|
[52]
|
X. Wei, J. Chen and G.-W. Wei, Persistent topological Laplacian analysis of SARS-CoV-2 variants, J. Comput. Biophys. Chem., 22 (2023), 569-587.
doi: 10.1142/S2737416523500278.
|
[53]
|
X. Wei and G.-W. Wei, Persistent sheaf Laplacians, Found. Data Sci., 5 (2023), 26–55, arXiv preprint, arXiv: 2112.10906, 2021.
doi: 10.3934/fods.2022015.
|
[54]
|
A. Zomorodian and G. Carlsson, Computing persistent homology, In Proceedings of the Twentieth Annual Symposium on Computational Geometry, (2004), 347-356.
doi: 10.1145/997817.997870.
|