[1]

S. Amal, L. Safarnejad, J. A. Omiye, I. Ghanzouri, J. H. Cabot and E. G. Ross, Use of multimodal data and machine learning to improve cardiovascular disease care, Frontiers in Cardiovascular Medicine, 2 (2022).

[2]

S. An, M. Lee, S. Park, H. Yang and J. So, An ensemble of simple convolutional neural network models for MNIST digit recognition, arXiv preprint, arXiv: 2008.10400, 2020.

[3]

T. Baltrušaitis, C. Ahuja and L.P. Morency, Multimodal machine learning: A survey and taxonomy, IEEE Transactions on Pattern Analysis and Machine Intelligence, 41 (2018), 423443.

[4]

L. Biewald, Experiment Tracking with Weights and Biases, Software available from wandb.com, 2020.

[5]

B. L. Boyce and M. D. Uchic, Progress toward autonomous experimental systems for alloy development, MRS Bulletin, 44 (2019), 273280.

[6]

C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins and A. Lerchner, Understanding disentangling in $\beta$VAE, arXiv preprint, arXiv: 1804.03599, 2018.

[7]

A. Chakraborty, P. Nandi and B. Chakraborty, Fingerprints of the quantum spacetime in timedependent quantum mechanics: An emergent geometric phase, Nuclear Phys. B, 975 (2022), Paper No. 115691, 27 pp.
doi: 10.1016/j.nuclphysb.2022.115691.

[8]

R. T. Chen, X. Li, R. Grosse and D. Duvenaud, Isolating sources of disentanglement in vaes, in Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018, 26152625.

[9]

R. T. Chen, Y. Rubanova, J. Bettencourt and D. K. Duvenaud, Neural ordinary differential equations, Advances in Neural Information Processing Systems, 31 (2018).

[10]

J. Cioffi and T. Kailath, Fast, recursiveleastsquares transversal filters for adaptive filtering, IEEE Transactions on Acoustics, Speech, and Signal Processing, 32 (1984), 304337.

[11]

N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni, K. Arulkumaran and M. Shanahan, Deep unsupervised clustering with Gaussian mixture variational autoencoders, arXiv preprint, arXiv: 1611.02648, 2016.

[12]

F. Dos Santos Rodrigues, G. Delgado, T. Santana de Costa and L. Tasic, Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts, BBA Advances, 3 (2023).

[13]

M. El Hariri El Nokab and K. Sebakhy, Solid state nmr spectroscopy a valuable technique for structural insights of advanced thin film materials: A review, Nanomaterials (Basel), 11 (2021).

[14]

D. Gao, J. Huang, X. Lin, D. Yang, Y. Wang and H. Zheng, Phase transitions and chemical reactions of octahydro1, 3, 5, 7tetranitro1, 3, 5, 7tetrazocine under high pressure and high temperature, RSC Advances, 9 (2019).

[15]

K. Hasselmann, Multipattern fingerprint method for detection and attribution of climate change, Climate Dynamics, 13 (1997), 601611.

[16]

G. Hegerl, F. Zwiers, P. Braconnot, N. P. Gillett, Y. M. Luo, J. M. Orsini, N. Nicholls, J. E. Penner and P. A. Stott, Understanding and Attributing Climate Change, 2007.

[17]

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed and A. Lerchner, betavae: Learning basic visual concepts with a constrained variational framework, in 5th International Conference on Learning Representations, ICLR, 2017 (2017).

[18]

J. D. Hunter, Matplotlib: A 2d graphics environment, Computing in Science & Engineering, 9 (2007), 9095.

[19]

O. Isayev, D. Fourches, E. N. Muratov, C. Oses, K. Rasch, A. Tropsha and S. Curtarolo, Materials cartography: Representing and mining materials space using structural and electronic fingerprints, Chemistry of Materials, 27 (2015), 735743.

[20]

E. Jang, S. Gu and B. Poole, Categorical reparameterization with gumbelsoftmax, arXiv preprint, arXiv: 1611.01144, 2016.

[21]

Z. Jiang, Y. Zheng, H. Tan, B. Tang and H. Zhou, Variational deep embedding: An unsupervised and generative approach to clustering, in Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017, 19651972.

[22]

M. I. Jordan and R. A. Jacobs, Hierarchical mixtures of experts and the em algorithm, Proceedings of 1993 International Conference on Neural Networks, 6 (1993), 181214.
doi: 10.1109/IJCNN.1993.716791.

[23]

H. Kim and A. Mnih, Disentangling by factorising, in International Conference on Machine Learning, PMLR, 2018, 26492658.

[24]

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980, 2014.

[25]

D. P. Kingma and M. Welling, AutoEncoding Variational Bayes, in 2nd International Conference on Learning Representations, ICLR 2014, 2014.

[26]

H. W. Kuhn, The hungarian method for the assignment problem, Naval Research Logistics Quarterly, 2 (1955), 8397.
doi: 10.1002/nav.3800020109.

[27]

I. E. Lagaris, A. Likas and D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Transactions on Neural Networks, 9 (1998), 9871000.

[28]

Y. LeCun, C. Cortes and C. Burges, Mnist handwritten digit database, ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2 (2010).

[29]

D. B. Lee, D. Min, S. Lee and S. J. Hwang, MetaGMVAE: Mixture of Gaussian VAE for Unsupervised MetaLearning, in International Conference on Learning Representations, 2020.

[30]

K. Lee, N. Trask and P. Stinis, Structurepreserving sparse identification of nonlinear dynamics for datadriven modeling, in Mathematical and Scientific Machine Learning, PMLR, 2022, 6580.

[31]

K. Lee, N. A. Trask, R. G. Patel, M. A. Gulian and E. C. Cyr, Partition of unity networks: Deep hpapproximation, arXiv preprint, arXiv: 2101.11256, 2021.

[32]

A. Liu, W. Zhu, D. Tsai and N. I. Zheludev, Micromachined tunable metamaterials: A review, Journal of Optics, 14 (2012), p. 114009.

[33]

F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf and O. Bachem, Challenging common assumptions in the unsupervised learning of disentangled representations, in International Conference on Machine Learning, PMLR, 2019, 41144124.

[34]

F. Locatello, S. Bauer, M. Lucic, G. R atsch, S. Gelly, B. Schölkopf and O. Bachem, Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations, in International Conference on Machine Learning, PMLR, 2019.

[35]

L. Lu, P. Jin and G. E. Karniadakis, Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators, arXiv preprint, arXiv: 1910.03193, 2019.

[36]

Z. Mao, L. Lu, O. Marxen, T. A. Zaki and G. E. Karniadakis, Deepm & mnet for hypersonics: Predicting the coupled flow and finiterate chemistry behind a normal shock using neuralnetwork approximation of operators, Journal of Computational Physics, 447 (2021), p. 110698.
doi: 10.1016/j.jcp.2021.110698.

[37]

S. M. Mennen and et al, The evolution of highthroughput experimentation in pharmaceutical development and perspectives on the future, Organic Process Research & Development, 23 (2019), 12131242.

[38]

E. J. Miittemeijer and P. Scardi, Diffraction Analysis of the Microstructure of Materials, SpringerVerlag, Berlin, 2004.

[39]

P. Nikolaev, D. Hooper, F. Webbed, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto and B. Maruyama, Autonomy in materials research: a case study in carbon nanotube growth, Npj Computational Materials, 2 (2016).

[40]

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, highperformance deep learning library, Advances in Neural Information Processing Systems, 32 (2019).

[41]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikitlearn: Machine learning in python, The Journal of Machine Learning Research, 12 (2011), 28252830.

[42]

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens and L. Carin, Variational autoencoder for deep learning of images, labels and captions, Advances in Neural Information Processing Systems, 29 (2016), 23522360.

[43]

A. Quaglino, M. Gallieri, J. Masci and J. Koutník, SNODE: Spectral Discretization of Neural ODEs for System Identification, in International Conference on Learning Representations, 2020.

[44]

M. Raissi, P. Perdikaris and G. E. Karniadakis, Physicsinformed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 378 (2019), 686707.
doi: 10.1016/j.jcp.2018.10.045.

[45]

D. Rao, F. Visin, A. Rusu, R. Pascanu, Y. W. Teh and R. Hadsell, Continual unsupervised representation learning, Advances in Neural Information Processing Systems, 32 (2019), 76477657.

[46]

D. J. Rezende, S. Mohamed and D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models, in International Conference on Machine Learning, PMLR, 2014, 12781286.

[47]

Y. Shi, B. Paige, P. Torr, et al., Variational mixtureofexperts autoencoders for multimodal deep generative models, Advances in Neural Information Processing Systems, 32 (2019).

[48]

R. D. Sochol, E. Sweet, C. C. Glick, S.Y. Wu, C. Yang, M. Restaino and L. Lin, 3d printed microfluidics and microelectronics, Microelectronic Engineering, 189 (2018), 5268.

[49]

K. Sohn, H. Lee and X. Yan, Learning structured output representation using deep conditional generative models, Advances in Neural Information Processing Systems, 28 (2015), 34833491.

[50]

T. M. Sutter, I. Daunhawer and J. E. Vogt, Generalized multimodal ELBO, in 9th International Conference on Learning Representations, ICLR, 2021.

[51]

M. Suzuki, K. Nakayama and Y. Matsuo, Joint multimodal learning with deep generative models, in 5th International Conference on Learning Representations, ICLR 2017, 2017.

[52]

N. Trask, A. Huang and X. Hu, Enforcing exact physics in scientific machine learning: A datadriven exterior calculus on graphs, J. Comput. Phys., 456 (2022), Paper No. 110969, 19 pp.
doi: 10.1016/j.jcp.2022.110969.

[53]

R. Vedantam, I. Fischer, J. Huang and K. Murphy, Generative Models of Visually Grounded Imagination, in 6th International Conference on Learning Representations, ICLR, 2018.

[54]

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., Scipy 1.0: fundamental algorithms for scientific computing in python, Nature Methods, 17 (2020), 261272.

[55]

D. Vizoso, G. Subhash, K. Rajan and R. Dingreville, Connecting vibrational spectroscopy to atomic structure via supervised manifold learning: Beyond peak analysis, Chem. Mater., 35 (2023), 11861200.

[56]

S. Wang, H. Wang and P. Perdikaris, Learning the solution operator of parametric partial differential equations with physicsinformed DeepONets, J. Comput. Phys., 475 (2023), Paper No. 111855, 18 pp.
doi: 10.1016/j.jcp.2022.111855.

[57]

M. L. Waskom, Seaborn: Statistical data visualization, Journal of Open Source Software, 6 (2021), p3021.

[58]

C. Weidenthaler, Pitfalls in the characterization of nanoporous and nanosized materials, Nanoscale, 3 (2011), 792810.

[59]

M. Wu and N. Goodman, Multimodal generative models for scalable weaklysupervised learning, Advances in Neural Information Processing Systems, 31 (2018).

[60]

J. Xie, R. Girshick and A. Farhadi, Unsupervised deep embedding for clustering analysis, in International Conference on Machine Learning, PMLR, 2016,478487.
