[1]
|
S. Amal, L. Safarnejad, J. A. Omiye, I. Ghanzouri, J. H. Cabot and E. G. Ross, Use of multi-modal data and machine learning to improve cardiovascular disease care, Frontiers in Cardiovascular Medicine, 2 (2022).
|
[2]
|
S. An, M. Lee, S. Park, H. Yang and J. So, An ensemble of simple convolutional neural network models for MNIST digit recognition, arXiv preprint, arXiv: 2008.10400, 2020.
|
[3]
|
T. Baltrušaitis, C. Ahuja and L.-P. Morency, Multimodal machine learning: A survey and taxonomy, IEEE Transactions on Pattern Analysis and Machine Intelligence, 41 (2018), 423-443.
|
[4]
|
L. Biewald, Experiment Tracking with Weights and Biases, Software available from wandb.com, 2020.
|
[5]
|
B. L. Boyce and M. D. Uchic, Progress toward autonomous experimental systems for alloy development, MRS Bulletin, 44 (2019), 273-280.
|
[6]
|
C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins and A. Lerchner, Understanding disentangling in $\beta$-VAE, arXiv preprint, arXiv: 1804.03599, 2018.
|
[7]
|
A. Chakraborty, P. Nandi and B. Chakraborty, Fingerprints of the quantum space-time in time-dependent quantum mechanics: An emergent geometric phase, Nuclear Phys. B, 975 (2022), Paper No. 115691, 27 pp.
doi: 10.1016/j.nuclphysb.2022.115691.
|
[8]
|
R. T. Chen, X. Li, R. Grosse and D. Duvenaud, Isolating sources of disentanglement in vaes, in Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018, 2615-2625.
|
[9]
|
R. T. Chen, Y. Rubanova, J. Bettencourt and D. K. Duvenaud, Neural ordinary differential equations, Advances in Neural Information Processing Systems, 31 (2018).
|
[10]
|
J. Cioffi and T. Kailath, Fast, recursive-least-squares transversal filters for adaptive filtering, IEEE Transactions on Acoustics, Speech, and Signal Processing, 32 (1984), 304-337.
|
[11]
|
N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni, K. Arulkumaran and M. Shanahan, Deep unsupervised clustering with Gaussian mixture variational autoencoders, arXiv preprint, arXiv: 1611.02648, 2016.
|
[12]
|
F. Dos Santos Rodrigues, G. Delgado, T. Santana de Costa and L. Tasic, Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts, BBA Advances, 3 (2023).
|
[13]
|
M. El Hariri El Nokab and K. Sebakhy, Solid state nmr spectroscopy a valuable technique for structural insights of advanced thin film materials: A review, Nanomaterials (Basel), 11 (2021).
|
[14]
|
D. Gao, J. Huang, X. Lin, D. Yang, Y. Wang and H. Zheng, Phase transitions and chemical reactions of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine under high pressure and high temperature, RSC Advances, 9 (2019).
|
[15]
|
K. Hasselmann, Multi-pattern fingerprint method for detection and attribution of climate change, Climate Dynamics, 13 (1997), 601-611.
|
[16]
|
G. Hegerl, F. Zwiers, P. Braconnot, N. P. Gillett, Y. M. Luo, J. M. Orsini, N. Nicholls, J. E. Penner and P. A. Stott, Understanding and Attributing Climate Change, 2007.
|
[17]
|
I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed and A. Lerchner, beta-vae: Learning basic visual concepts with a constrained variational framework, in 5th International Conference on Learning Representations, ICLR, 2017 (2017).
|
[18]
|
J. D. Hunter, Matplotlib: A 2d graphics environment, Computing in Science & Engineering, 9 (2007), 90-95.
|
[19]
|
O. Isayev, D. Fourches, E. N. Muratov, C. Oses, K. Rasch, A. Tropsha and S. Curtarolo, Materials cartography: Representing and mining materials space using structural and electronic fingerprints, Chemistry of Materials, 27 (2015), 735-743.
|
[20]
|
E. Jang, S. Gu and B. Poole, Categorical reparameterization with gumbel-softmax, arXiv preprint, arXiv: 1611.01144, 2016.
|
[21]
|
Z. Jiang, Y. Zheng, H. Tan, B. Tang and H. Zhou, Variational deep embedding: An unsupervised and generative approach to clustering, in Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017, 1965-1972.
|
[22]
|
M. I. Jordan and R. A. Jacobs, Hierarchical mixtures of experts and the em algorithm, Proceedings of 1993 International Conference on Neural Networks, 6 (1993), 181-214.
doi: 10.1109/IJCNN.1993.716791.
|
[23]
|
H. Kim and A. Mnih, Disentangling by factorising, in International Conference on Machine Learning, PMLR, 2018, 2649-2658.
|
[24]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980, 2014.
|
[25]
|
D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, in 2nd International Conference on Learning Representations, ICLR 2014, 2014.
|
[26]
|
H. W. Kuhn, The hungarian method for the assignment problem, Naval Research Logistics Quarterly, 2 (1955), 83-97.
doi: 10.1002/nav.3800020109.
|
[27]
|
I. E. Lagaris, A. Likas and D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Transactions on Neural Networks, 9 (1998), 987-1000.
|
[28]
|
Y. LeCun, C. Cortes and C. Burges, Mnist handwritten digit database, ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2 (2010).
|
[29]
|
D. B. Lee, D. Min, S. Lee and S. J. Hwang, Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning, in International Conference on Learning Representations, 2020.
|
[30]
|
K. Lee, N. Trask and P. Stinis, Structure-preserving sparse identification of nonlinear dynamics for data-driven modeling, in Mathematical and Scientific Machine Learning, PMLR, 2022, 65-80.
|
[31]
|
K. Lee, N. A. Trask, R. G. Patel, M. A. Gulian and E. C. Cyr, Partition of unity networks: Deep hp-approximation, arXiv preprint, arXiv: 2101.11256, 2021.
|
[32]
|
A. Liu, W. Zhu, D. Tsai and N. I. Zheludev, Micromachined tunable metamaterials: A review, Journal of Optics, 14 (2012), p. 114009.
|
[33]
|
F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf and O. Bachem, Challenging common assumptions in the unsupervised learning of disentangled representations, in International Conference on Machine Learning, PMLR, 2019, 4114-4124.
|
[34]
|
F. Locatello, S. Bauer, M. Lucic, G. R atsch, S. Gelly, B. Schölkopf and O. Bachem, Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations, in International Conference on Machine Learning, PMLR, 2019.
|
[35]
|
L. Lu, P. Jin and G. E. Karniadakis, Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators, arXiv preprint, arXiv: 1910.03193, 2019.
|
[36]
|
Z. Mao, L. Lu, O. Marxen, T. A. Zaki and G. E. Karniadakis, Deepm & mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators, Journal of Computational Physics, 447 (2021), p. 110698.
doi: 10.1016/j.jcp.2021.110698.
|
[37]
|
S. M. Mennen and et al, The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future, Organic Process Research & Development, 23 (2019), 1213-1242.
|
[38]
|
E. J. Miittemeijer and P. Scardi, Diffraction Analysis of the Microstructure of Materials, Springer-Verlag, Berlin, 2004.
|
[39]
|
P. Nikolaev, D. Hooper, F. Webbed, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto and B. Maruyama, Autonomy in materials research: a case study in carbon nanotube growth, Npj Computational Materials, 2 (2016).
|
[40]
|
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems, 32 (2019).
|
[41]
|
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in python, The Journal of Machine Learning Research, 12 (2011), 2825-2830.
|
[42]
|
Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens and L. Carin, Variational autoencoder for deep learning of images, labels and captions, Advances in Neural Information Processing Systems, 29 (2016), 2352-2360.
|
[43]
|
A. Quaglino, M. Gallieri, J. Masci and J. Koutník, SNODE: Spectral Discretization of Neural ODEs for System Identification, in International Conference on Learning Representations, 2020.
|
[44]
|
M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 378 (2019), 686-707.
doi: 10.1016/j.jcp.2018.10.045.
|
[45]
|
D. Rao, F. Visin, A. Rusu, R. Pascanu, Y. W. Teh and R. Hadsell, Continual unsupervised representation learning, Advances in Neural Information Processing Systems, 32 (2019), 7647-7657.
|
[46]
|
D. J. Rezende, S. Mohamed and D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models, in International Conference on Machine Learning, PMLR, 2014, 1278-1286.
|
[47]
|
Y. Shi, B. Paige, P. Torr, et al., Variational mixture-of-experts autoencoders for multi-modal deep generative models, Advances in Neural Information Processing Systems, 32 (2019).
|
[48]
|
R. D. Sochol, E. Sweet, C. C. Glick, S.-Y. Wu, C. Yang, M. Restaino and L. Lin, 3d printed microfluidics and microelectronics, Microelectronic Engineering, 189 (2018), 52-68.
|
[49]
|
K. Sohn, H. Lee and X. Yan, Learning structured output representation using deep conditional generative models, Advances in Neural Information Processing Systems, 28 (2015), 3483-3491.
|
[50]
|
T. M. Sutter, I. Daunhawer and J. E. Vogt, Generalized multimodal ELBO, in 9th International Conference on Learning Representations, ICLR, 2021.
|
[51]
|
M. Suzuki, K. Nakayama and Y. Matsuo, Joint multimodal learning with deep generative models, in 5th International Conference on Learning Representations, ICLR 2017, 2017.
|
[52]
|
N. Trask, A. Huang and X. Hu, Enforcing exact physics in scientific machine learning: A data-driven exterior calculus on graphs, J. Comput. Phys., 456 (2022), Paper No. 110969, 19 pp.
doi: 10.1016/j.jcp.2022.110969.
|
[53]
|
R. Vedantam, I. Fischer, J. Huang and K. Murphy, Generative Models of Visually Grounded Imagination, in 6th International Conference on Learning Representations, ICLR, 2018.
|
[54]
|
P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., Scipy 1.0: fundamental algorithms for scientific computing in python, Nature Methods, 17 (2020), 261-272.
|
[55]
|
D. Vizoso, G. Subhash, K. Rajan and R. Dingreville, Connecting vibrational spectroscopy to atomic structure via supervised manifold learning: Beyond peak analysis, Chem. Mater., 35 (2023), 1186-1200.
|
[56]
|
S. Wang, H. Wang and P. Perdikaris, Learning the solution operator of parametric partial differential equations with physics-informed DeepONets, J. Comput. Phys., 475 (2023), Paper No. 111855, 18 pp.
doi: 10.1016/j.jcp.2022.111855.
|
[57]
|
M. L. Waskom, Seaborn: Statistical data visualization, Journal of Open Source Software, 6 (2021), p3021.
|
[58]
|
C. Weidenthaler, Pitfalls in the characterization of nanoporous and nanosized materials, Nanoscale, 3 (2011), 792-810.
|
[59]
|
M. Wu and N. Goodman, Multimodal generative models for scalable weakly-supervised learning, Advances in Neural Information Processing Systems, 31 (2018).
|
[60]
|
J. Xie, R. Girshick and A. Farhadi, Unsupervised deep embedding for clustering analysis, in International Conference on Machine Learning, PMLR, 2016,478-487.
|