[1]
|
K. Aas, M. Jullum and A. Løland, Explaining individual predictions when features are dependent: More accurate approximations to Shapley values, Artificial Intelligence, 298 (2021), Paper No. 103502, 24 pp.
doi: 10.1016/j.artint.2021.103502.
|
[2]
|
E. Al Daoud, Comparison between XGBoost, lightGBM and CatBoost using a home credit dataset, International Journal of Computer and Information Engineering, 13 (2019), 6-10.
|
[3]
|
D. Alvarez Melis and T. Jaakkola, Towards robust interpretability with self-explaining neural networks, Advances in Neural Information Processing Systems, 31 (2018).
|
[4]
|
S. I. Amoukou, T. Salaün and N. Brunel, Accurate Shapley values for explaining tree-based models, in International Conference on Artificial Intelligence and Statistics, PMLR, (2022), 2448-2465.
|
[5]
|
R. J. Aumann and J. H. Dréze, Cooperative games with coalition structures, International Journal of Game Theory, 3 (1974), 217-237.
doi: 10.1007/BF01766876.
|
[6]
|
J. F. Banzhaf III, Weighted voting doesn't work: A mathematical analysis, Rutgers L. Rev., 19 (1964), 317.
|
[7]
|
L. Breiman, Random forests, Machine Learning, 45 (2001), 5-32.
doi: 10.1023/A:1010933404324.
|
[8]
|
T. W. Campbell, H. Roder, R. W. Georgantas III and J. Roder, Exact Shapley values for local and model-true explanations of decision tree ensembles, Machine Learning with Applications, 9 (2022), 100345.
doi: 10.1016/j.mlwa.2022.100345.
|
[9]
|
R. Caruana and A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in Proceedings of the 23rd International Conference on Machine Learning, (2006), 161-168.
doi: 10.1145/1143844.1143865.
|
[10]
|
H. Chen, I. C. Covert, S. M. Lundberg and S.-I. Lee, Algorithms to estimate Shapley value feature attributions, arXiv e-prints, 2022. arXiv: 2207.07605v1.
|
[11]
|
H. Chen, J. D. Janizek, S. Lundberg and S.-I. Lee, True to the model or true to the data?, arXiv e-prints, 2020. arXiv: 2006.16234.
|
[12]
|
H. Chen, S. Lundberg and S.-I. Lee, Explaining models by propagating Shapley values of local components, Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability, 914 (2021), 261-270.
doi: 10.1007/978-3-030-53352-6_24.
|
[13]
|
T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, in Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, (2016), 785-794.
doi: 10.1145/2939672.2939785.
|
[14]
|
A. Chopra and P. Bhilare, Application of ensemble models in credit scoring models, Business Perspectives and Research, 6 (2018), 129-141.
doi: 10.1177/2278533718765531.
|
[15]
|
A. Datta, S. Sen, and Y. Zick, Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems, in 2016 IEEE Symposium on Security and Privacy (SP), IEEE, (2016), 598-617.
doi: 10.1109/SP.2016.42.
|
[16]
|
T. G. Dietterich, Ensemble methods in machine learning, in International Workshop on Multiple Classifier Systems, Springer, 1857 (2000), 1-15.
doi: 10.1007/3-540-45014-9_1.
|
[17]
|
Documentation, CatBoost. https://catboost.ai/en/docs.
|
[18]
|
Documentation, LightGBM. https://lightgbm.readthedocs.io/en/latest/index.html.
|
[19]
|
Documentation, TreeSHAP. https://shap-lrjball.readthedocs.io/en/latest/generated/shap.TreeExplainer.html.
|
[20]
|
Documentation, XGBoost. https://xgboost.readthedocs.io/en/stable.
|
[21]
|
A. Dorogush, V. Ershov and A. Gulin, CatBoost: gradient boosting with categorical features support, arXiv e-prints, 2018. arXiv: 1810.11363.
|
[22]
|
ECOA, Equal Credit Opportunity Act. https://www.justice.gov/crt/equal-credit-opportunity-act-3.
|
[23]
|
K. Fernandes, P. Vinagre, P. Cortez and P. Sernadela, Online News Popularity, UCI Machine Learning Repository, 2015.
doi: 10.24432/C5NS3V.
|
[24]
|
M. Ferov and M. Modrý, Enhancing LambdaMART using oblivious trees, arXiv e-prints, 2016. arXiv: 1609.05610.
|
[25]
|
FHA, Fair Housing Act. https://www.justice.gov/crt/fair-housing-act-1.
|
[26]
|
J. H. Friedman, Greedy function approximation: A gradient boosting machine., Annals of Statistics, 29 (2001), 1189-1232.
doi: 10.1214/aos/1013203451.
|
[27]
|
L. Grinsztajn, E. Oyallon and G. Varoquaux, Why do tree-based models still outperform deep learning on typical tabular data?, in Thirty-Sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.
|
[28]
|
K. Hamidieh, Superconductivty Data, UCI Machine Learning Repository, 2018.
doi: 10.24432/C53P47.
|
[29]
|
J. T. Hancock and T. M. Khoshgoftaar, CatBoost for big data: An interdisciplinary review, Journal of Big Data, 7 (2020), 1-45.
|
[30]
|
T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, volume 2, Springer, 2009.
doi: 10.1007/978-0-387-84858-7.
|
[31]
|
X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, et al., Practical lessons from predicting clicks on ads at facebook, in Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, (2014), 1-9.
doi: 10.1145/2648584.2648589.
|
[32]
|
L. Hu, J. Chen, J. Vaughan, S. Aramideh, H. Yang, K. Wang, A. Sudjianto and V. N. Nair, Supervised machine learning techniques: An overview with applications to banking, International Statistical Review, 89 (2021), 573-604.
doi: 10.1111/insr.12448.
|
[33]
|
D. Janzing, L. Minorics and P. Blöbaum, Feature relevance quantification in explainable AI: A causal problem, in International Conference on Artificial Intelligence and Statistics, PMLR, (2020), 2907-2916.
|
[34]
|
B. John, When to Choose CatBoost Over XGBoost or LightGBM [Practical Guide]?, (neptun.ai), 2022. https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgbm.
|
[35]
|
M. Jullum, A. Redelmeier and K. Aas, GroupShapley: Efficient prediction explanation with Shapley values for feature groups, arXiv e-prints, 2021. arXiv: 2106.12228.
|
[36]
|
U. Kamath and J. Liu, Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning, Springer, 2021.
doi: 10.1007/978-3-030-83356-5.
|
[37]
|
Y. Kamijo, A two-step Shapley value for cooperative games with coalition structures, International Game Theory Review, 11 (2009), 207-214.
doi: 10.1142/S0219198909002261.
|
[38]
|
A. Karczmarz, T. Michalak, A. Mukherjee, P. Sankowski and P. Wygocki, Improved feature importance computation for tree models based on the Banzhaf value, in The 38th Conference on Uncertainty in Artificial Intelligence, 2022.
|
[39]
|
G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu, LightGBM: A highly efficient gradient boosting decision tree, Advances in Neural Information Processing Systems, 30 (2017).
|
[40]
|
L. Koralov and Y. Sinai, in Theory of Probability and Random Processes, Springer, 2007.
doi: 10.1007/978-3-540-68829-7.
|
[41]
|
K. Kotsiopoulos, A. Miroshnikov, K. Filom and A. R. Kannan, Approximation of group explainers with coalition structure using Monte Carlo sampling on the product space of coalitions and features, arXiv e-prints, 2023. arXiv: 2303.10216.
|
[42]
|
H. Lakkaraju, E. Kamar, R. Caruana and J. Leskovec, Interpretable & explorable approximations of black box models, arXiv e-prints, 2017. arXiv: 1707.01154.
|
[43]
|
Y. Lou, R. Caruana, J. Gehrke and G. Hooker, Accurate intelligible models with pairwise interactions, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2013), 623-631.
doi: 10.1145/2487575.2487579.
|
[44]
|
S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal and S.-I. Lee, From local explanations to global understanding with explainable AI for trees, Nature Machine Intelligence, 2 (2020), 56-67.
doi: 10.1038/s42256-019-0138-9.
|
[45]
|
S. M. Lundberg, G. G. Erion and S.-I. Lee, Consistent individualized feature attribution for tree ensembles, arXiv e-prints, 2018. arXiv: 1802.03888.
|
[46]
|
S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions, Advances in Neural Information Processing Systems, 30 (2017).
|
[47]
|
L. Merrick and A. Taly, The explanation game: Explaining machine learning models using Shapley values, in International Cross-Domain Conference for Machine Learning and Knowledge Extraction, Springer, 12279 (2020), 17-38.
doi: 10.1007/978-3-030-57321-8_2.
|
[48]
|
A. Miroshnikov, K. Kotsiopoulos, K. Filom and A. R. Kannan, Stability theory of game-theoretic group feature explanations for machine learning models, arXiv e-prints, 2024. arXiv: 2102.10878v5.
|
[49]
|
C. Molnar, Interpretable Machine Learning, Lulu.com, 2020.
|
[50]
|
G. F. Montufar, R. Pascanu, K. Cho and Y. Bengio, On the number of linear regions of deep neural networks, Advances in Neural Information Processing Systems, 27 (2014).
|
[51]
|
A. Nahon, XGBoost, LightGBM or CatBoost-Which Boosting Algorithm Should I Use?, Medium.com/riskified-technology, 2019. https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc.
|
[52]
|
H. Nori, S. Jenkins, P. Koch and R. Caruana, InterpretML: A unified framework for machine learning interpretability, arXiv e-prints, 2019. arXiv: 1909.09223.
|
[53]
|
G. Owen, Values of games with a priori unions, in Mathematical Economics and Game Theory, Springer, 141 (1977), 76-88.
doi: 10.1007/978-3-642-45494-3_7.
|
[54]
|
M. Raghu, B. Poole, J. Kleinberg, S. Ganguli and J. Sohl-Dickstein, On the expressive power of deep neural networks, in International Conference on Machine Learning, PMLR, (2017), 2847-2854.
|
[55]
|
Y. A. Reshef, D. N. Reshef, H. K. Finucane, P. C. Sabeti and M. Mitzenmacher, Measuring dependence powerfully and equitably, J. Mach. Learn. Res., 17 (2016), Paper No. 212, 63 pp.
|
[56]
|
M. T. Ribeiro, S. Singh and C. Guestrin, "Why should I trust you?" Explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2016), 1135-1144.
|
[57]
|
M. T. Ribeiro, S. Singh and C. Guestrin, Anchors: High-precision model-agnostic explanations, in Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.
doi: 10.1609/aaai.v32i1.11491.
|
[58]
|
B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu and G. McGregor, Boosted decision trees as an alternative to artificial neural networks for particle identification, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 543 (2005), 577-584.
doi: 10.1016/j.nima.2004.12.018.
|
[59]
|
C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nature Machine Intelligence, 1 (2019), 206-215.
doi: 10.1038/s42256-019-0048-x.
|
[60]
|
A. Saabas, Treeinterpreter Python Package, 2019. https://github.com/andosa/treeinterpreter.
|
[61]
|
S. Saha, XGBoost vs LightGBM: How Are They Different, Neptun.ai, 2022. https://neptune.ai/blog/xgboost-vs-lightgbm.
|
[62]
|
L. S. Shapley, A value for n-person games, Contributions to the Theory of Games, 2 (1953), 307-317.
doi: 10.1515/9781400881970-018.
|
[63]
|
Y. Shuo Tan, C. Singh, K. Nasseri, A. Agarwal and B. Yu, Fast interpretable greedy-tree sums (FIGS), arXiv e-prints, 2022. arXiv: 2201.11931.
|
[64]
|
R. Shwartz-Ziv and A. Armon, Tabular data: Deep learning is not all you need, Information Fusion, 81 (2022), 84-90.
doi: 10.1016/j.inffus.2021.11.011.
|
[65]
|
E. Štrumbelj and I. Kononenko, Explaining prediction models and individual predictions with feature contributions, Knowledge and Information Systems, 41 (2014), 647-665.
doi: 10.1007/s10115-013-0679-x.
|
[66]
|
A. Sudjianto, W. Knauth, R. Singh, Z. Yang and A. Zhang, Unwrapping the black box of deep ReLU networks: Interpretability, diagnostics, and simplification, arXiv e-prints, 2020. arXiv: 2011.04041.
|
[67]
|
A. Sudjianto and A. Zhang, Designing inherently interpretable machine learning models, arXiv e-prints, 2021. arXiv: 2111.01743.
|
[68]
|
M. Sundararajan and A. Najmi, The many Shapley values for model explanation, in International Conference on Machine Learning, PMLR, (2020), 9269-9278.
|
[69]
|
M. Sundararajan, A. Taly and Q. Yan, Axiomatic attribution for deep networks, in International Conference on Machine Learning, PMLR, (2017), 3319-3328.
|
[70]
|
L. Torgo and R. Camacho, Ailerons Data, OpenML Data Repository, 2014. https://www.openml.org/search?type=data&status=active&id=296.
|
[71]
|
L. Turgeman and J. H. May, A mixed-ensemble model for hospital readmission, Artificial Intelligence in Medicine, 72 (2016), 72-82.
doi: 10.1016/j.artmed.2016.08.005.
|
[72]
|
J. Vaughan, A. Sudjianto, E. Brahimi, J. Chen and V. N. Nair, Explainable neural networks based on additive index models, arXiv e-prints, 2018. arXiv: 1806.01933.
|
[73]
|
D. Whiteson, HIGGS, UCI Machine Learning Repository, 2014.
doi: 10.24432/C5V312.
|
[74]
|
Q. Wu, C. J. Burges, K. M. Svore and J. Gao, Adapting boosting for information retrieval measures, Information Retrieval, 13 (2010), 254-270.
doi: 10.1007/s10791-009-9112-1.
|
[75]
|
J. Yang, Fast TreeSHAP: Accelerating SHAP value computation for trees, arXiv e-prints, 2021. arXiv: 2109.09847.
|
[76]
|
Z. Yang, A. Zhang and A. Sudjianto, Enhancing explainability of neural networks through architecture constraints, IEEE Transactions on Neural Networks and Learning Systems, 32 (2021), 2610-2621.
doi: 10.1109/TNNLS.2020.3007259.
|
[77]
|
Z. Yang, A. Zhang and A. Sudjianto, GAMI-Net: An explainable neural network based on generalized additive models with structured interactions, Pattern Recognition, 120 (2021), 108192.
doi: 10.1016/j.patcog.2021.108192.
|
[78]
|
H. P. Young, Monotonic solutions of cooperative games, International Journal of Game Theory, 14 (1985), 65-72.
doi: 10.1007/BF01769885.
|
[79]
|
Z. Zhang, Y. Zhao, A. Canes, D. Steinberg, O. Lyashevska, et al., Predictive analytics with gradient boosting in clinical medicine, Annals of Translational Medicine, 7 (2019).
doi: 10.21037/atm.2019.03.29.
|
[80]
|
W. Zhao, R. Singh, T. Joshi, A. Sudjianto and V. N. Nair, Self-interpretable convolutional neural networks for text classification, arXiv e-prints, 2021. arXiv: 2105.08589.
|