[1]
|
M. Ainsworth and J. Dong, Galerkin neural networks: A framework for approximating variational equations with error control, SIAM Journal on Scientific Computing, 43 (2021), A2474-A2501.
doi: 10.1137/20M1366587.
|
[2]
|
M. Ainsworth and J. Dong, Galerkin neural network approximation of singularly-perturbed elliptic systems, Computer Methods in Applied Mechanics and Engineering, 402 (2022), 115169.
doi: 10.1016/j.cma.2022.115169.
|
[3]
|
Z. Aldirany, R. Cottereau, M. Laforest and S. Prudhomme, Multi-level neural networks for accurate solutions of boundary-value problems, Comput. Methods Appl. Mech. Engrg, 419 (2024), 23.
|
[4]
|
M. Aliakbari, M. Mahmoudi, P. Vadasz and A. Arzani, Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks, International Journal of Heat and Fluid Flow, 96 (2022), 109002.
doi: 10.1016/j.ijheatfluidflow.2022.109002.
|
[5]
|
Z. Allen-Zhu, Y. Li and Z. Song, A convergence theory for deep learning via over-parameterization, International Conference on Machine Learning, PMLR, (2019), 242-252.
|
[6]
|
C. Bajaj, L. McLennan, T. Andeen and A. Roy, Recipes for when physics fails: Recovering robust learning of physics informed neural networks, Machine Learning: Science and Technology, 4 (2023), 015013.
doi: 10.1088/2632-2153/acb416.
|
[7]
|
N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar, A. Patra, J. Sethian and S. Wild, et al., Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence, Technical Report, USDOE Office of Science (SC), Washington, DC (United States), (2019).
doi: 10.2172/1478744.
|
[8]
|
M. E. Bento, Physics-guided neural network for load margin assessment of power systems, IEEE Transactions on Power Systems.
|
[9]
|
D. Bertsimas and J. Tsitsiklis, Simulated annealing, Statistical Science, 8 (1993), 10-15.
doi: 10.1214/ss/1177011077.
|
[10]
|
J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne and Q. Zhang, JAX: composable transformations of Python+NumPy programs, (2018), URL http://github.com/google/jax.
|
[11]
|
S. L. Brunton, Applying machine learning to study fluid mechanics, Acta Mechanica Sinica, 37 (2021), 1718-1726.
doi: 10.1007/s10409-021-01143-6.
|
[12]
|
S. Cai, Z. Mao, Z. Wang, M. Yin and G. E. Karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: A review, Acta Mechanica Sinica, 37 (2021), 1727-1738.
doi: 10.1007/s10409-021-01148-1.
|
[13]
|
W. Chen and P. Stinis, Feature-adjacent multi-fidelity physics-informed machine learning for partial differential equations, Comput. Phys., 498 (2024), 112683.
|
[14]
|
Y. Chen, L. Lu, G. E. Karniadakis and L. Dal Negro, Physics-informed neural networks for inverse problems in nano-optics and metamaterials, Optics Express, 28 (2020), 11618-11633.
doi: 10.1364/OE.384875.
|
[15]
|
P.-Y. Chuang and L. A. Barba, Experience report of physics-informed neural networks in fluid simulations: Pitfalls and frustration, arXiv Preprint arXiv: 2205.14249.
|
[16]
|
P.-Y. Chuang and L. A. Barba, Predictive limitations of physics-informed neural networks in vortex shedding, arXiv Preprint arXiv: 2306.00230.
|
[17]
|
S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi and F. Piccialli, Scientific machine learning through physics-informed neural networks: Where we are and what's next, Journal of Scientific Computing, 92 (2022), 88.
doi: 10.1007/s10915-022-01939-z.
|
[18]
|
A. Daw, J. Bu, S. Wang, P. Perdikaris and A. Karpatne, Mitigating propagation failures in physics-informed neural networks using retain-resample-release (R3) sampling, arXiv Preprint arXiv: 2207.02338.
|
[19]
|
S. De, M. Reynolds, M. Hassanaly, R. N. King and A. Doostan, Bi-fidelity modeling of uncertain and partially unknown systems using DeepONets, Computational Mechanics, 71 (2023), 1251-1267.
doi: 10.1007/s00466-023-02272-4.
|
[20]
|
V. Dolean, A. Heinlein, S. Mishra and B. Moseley, Multilevel domain decomposition-based architectures for physics-informed neural networks, Comput. Methods Appl. Mech. Engrg., 429 (2024), 117116.
|
[21]
|
T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, (2014), URL http://www.chebfun.org/docs/guide/.
|
[22]
|
S. Du, J. Lee, H. Li, L. Wang and X. Zhai, Gradient descent finds global minima of deep neural networks, International Conference on Machine Learning, PMLR, (2019), 1675-1685.
|
[23]
|
P. Dubois, T. Gomez, L. Planckaert and L. Perret, Machine learning for fluid flow reconstruction from limited measurements, Journal of Computational Physics, 448 (2022), 110733.
|
[24]
|
Z. Fang and J. Zhan, Deep physical informed neural networks for metamaterial design, IEEE Access, 8 (2019), 24506-24513.
doi: 10.1109/ACCESS.2019.2963375.
|
[25]
|
Z. Gao, L. Yan and T. Zhou, Failure-informed adaptive sampling for PINNs, SIAM Journal on Scientific Computing, 45 (2023), A1971-A1994.
doi: 10.1137/22M1527763.
|
[26]
|
S. Goswami, A. Bora, Y. Yu and G. E. Karniadakis, Physics-informed deep neural operators networks, arXiv Preprint arXiv: 2207.05748.
|
[27]
|
S. Goswami, K. Kontolati, M. D. Shields and G. E. Karniadakis, Deep transfer operator learning for partial differential equations under conditional shift, Nature Machine Intelligence, 4 (2022), 1155-1164.
doi: 10.1038/s42256-022-00569-2.
|
[28]
|
S. Goswami, M. Yin, Y. Yu and G. E. Karniadakis, A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials, Computer Methods in Applied Mechanics and Engineering, 391 (2022), 114587.
doi: 10.1016/j.cma.2022.114587.
|
[29]
|
Y. Hao, P. C. Di Leoni, O. Marxen, C. Meneveau, G. E. Karniadakis and T. A. Zaki, Instability-wave prediction in hypersonic boundary layers with physics-informed neural operators, Journal of Computational Science, 102120.
|
[30]
|
Q. He, M. Perego, A. A. Howard, G. E. Karniadakis and P. Stinis, A hybrid deep neural operator/finite element method for ice-sheet modeling, Journal of Computational Physics, 492 (2023), 0112428.
doi: 10.1016/j.jcp.2023.112428.
|
[31]
|
J. Hou, Y. Li and S. Ying, Enhancing pinns for solving pdes via adaptive collocation point movement and adaptive loss weighting, Nonlinear Dynamics, 111 (2023), 15233-15261.
doi: 10.1007/s11071-023-08654-w.
|
[32]
|
J. Hou, Y. Li and S. Ying, Enhancing PINNs for solving PDEs via adaptive collocation point movement and adaptive loss weighting, Nonlinear Dynamics, 111 (2023), 15233-15261.
doi: 10.1007/s11071-023-08654-w.
|
[33]
|
A. Howard, Y. Fu and P. Stinis, A multifidelity approach to continual learning for physical systems, Machine Learning: Science and Technology, 5 (2024), 025042.
|
[34]
|
A. A. Howard, M. Perego, G. E. Karniadakis and P. Stinis, Multifidelity deep operator networks for data-driven and physics-informed problems, Journal of Computational Physics, 493 (2023), 112462.
doi: 10.1016/j.jcp.2023.112462.
|
[35]
|
B. Huang and J. Wang, Applications of physics-informed neural networks in power systems-a review, IEEE Transactions on Power Systems, 38 (2022), 572-588.
doi: 10.1109/TPWRS.2022.3162473.
|
[36]
|
A. Jacot, F. Gabriel and C. Hongler, Neural tangent kernel: Convergence and generalization in neural networks, Advances in Neural Information Processing Systems, 31 (2021).
|
[37]
|
A. D. Jagtap, D. Mitsotakis and G. E. Karniadakis, Deep learning of inverse water waves problems using multi-fidelity data: Application to Serre–Green–Naghdi equations, Ocean Engineering, 248 (2022), 110775.
doi: 10.1016/j.oceaneng.2022.110775.
|
[38]
|
X. Jin, S. Cai, H. Li and G. E. Karniadakis, NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations, Journal of Computational Physics, 426 (2021), 109951.
doi: 10.1016/j.jcp.2020.109951.
|
[39]
|
A. S. Joglekar and A. G. R. Thomas, Machine learning of hidden variables in multiscale fluid simulation, Machine Learning: Science and Technology, 4 (2023), 035049.
doi: 10.1088/2632-2153/acf81a.
|
[40]
|
G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang and L. Yang, Physics-informed machine learning, Nature Reviews Physics, 3 (2021), 422-440.
doi: 10.1038/s42254-021-00314-5.
|
[41]
|
S. Koric and D. W. Abueidda, Data-driven and physics-informed deep learning operators for solution of heat conduction equation with parametric heat source, International Journal of Heat and Mass Transfer, 203 (2023), 123809.
doi: 10.1016/j.ijheatmasstransfer.2022.123809.
|
[42]
|
A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby and M. W. Mahoney, Characterizing possible failure modes in physics-informed neural networks, Advances in Neural Information Processing Systems, 34 (2021), 26548-26560.
|
[43]
|
V. Kumar, S. Goswami, D. J. Smith and G. E. Karniadakis, Real-time prediction of multiple output states in diesel engines using a deep neural operator framework, arXiv Preprint arXiv: 2304.00567.
|
[44]
|
Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart and A. Anandkumar, Fourier neural operator for parametric partial differential equations, arXiv Preprint arXiv: 2010.08895.
|
[45]
|
Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart and A. Anandkumar, Neural operator: Graph kernel network for partial differential equations, arXiv Preprint arXiv: 2003.03485.
|
[46]
|
D. Liu and Y. Wang, Multi-fidelity physics-constrained neural network and its application in materials modeling, Journal of Mechanical Design, 141 (2019), 121403.
doi: 10.1115/1.4044400.
|
[47]
|
L. Liu, K. Nath and W. Cai, A causality-DeepONet for causal responses of linear dynamical systems, arXiv Preprint arXiv: 2209.08397.
|
[48]
|
Y.-T. Liu, C.-Y. Wu, T. Chen and Y. Yao, Multi-fidelity surrogate modeling for chemical processes with physics-informed neural networks, Computer Aided Chemical Engineering, Elsevier, 52 (2023), 57-63.
doi: 10.1016/B978-0-443-15274-0.50010-X.
|
[49]
|
L. Lu, P. Jin and G. E. Karniadakis, DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators, arXiv Preprint arXiv: 1910.03193.
|
[50]
|
L. Lu, P. Jin, G. Pang, Z. Zhang and G. E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nature Machine Intelligence, 3 (2021), 218-229.
doi: 10.1038/s42256-021-00302-5.
|
[51]
|
L. Lu, R. Pestourie, S. G. Johnson and G. Romano, Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport, Physical Review Research, 4 (2022), 023210.
doi: 10.1103/PhysRevResearch.4.023210.
|
[52]
|
Z. Mao, A. D. Jagtap and G. E. Karniadakis, Physics-informed neural networks for high-speed flows, Computer Methods in Applied Mechanics and Engineering, 360 (2020), 112789.
doi: 10.1016/j.cma.2019.112789.
|
[53]
|
R. Mattey and S. Ghosh, A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations, Computer Methods in Applied Mechanics and Engineering, 390 (2022), 114474.
doi: 10.1016/j.cma.2021.114474.
|
[54]
|
L. McClenny and U. Braga-Neto, Self-adaptive physics-informed neural networks using a soft attention mechanism, arXiv Preprint arXiv: 2009.04544.
|
[55]
|
X. Meng and G. E. Karniadakis, A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems, Journal of Computational Physics.
|
[56]
|
G. S. Misyris, A. Venzke and S. Chatzivasileiadis, Physics-informed neural networks for power systems, 2020 IEEE Power & Energy Society General Meeting (PESGM), IEEE, (2020), 1-5.
doi: 10.1109/PESGM41954.2020.9282004.
|
[57]
|
R. Mojgani, M. Balajewicz and P. Hassanzadeh, Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks, arXiv Preprint arXiv: 2205.02902.
|
[58]
|
J. J. J. Molina, K. Ogawa and T. Taniguchi, Stokesian processes: Inferring Stokes flows using physics-informed Gaussian processes, Machine Learning: Science and Technology.
|
[59]
|
B. Moseley, A. Markham and T. Nissen-Meyer, Finite basis physics-informed neural networks (FBPINNs): A scalable domain decomposition approach for solving differential equations, Advances in Computational Mathematics, 49 (2023), 62.
doi: 10.1007/s10444-023-10065-9.
|
[60]
|
C. Moya and G. Lin, DAE-PINN: A physics-informed neural network model for simulating differential algebraic equations with application to power networks, Neural Computing and Applications, 35 (2023), 3789-3804.
doi: 10.1007/s00521-022-07886-y.
|
[61]
|
M. A. Nabian, R. J. Gladstone and H. Meidani, Efficient training of physics-informed neural networks via importance sampling, Computer-Aided Civil and Infrastructure Engineering, 36 (2021), 962-977.
doi: 10.1111/mice.12685.
|
[62]
|
M. Penwarden, A. D. Jagtap, S. Zhe, G. E. Karniadakis and R. M. Kirby, A unified scalable framework for causal sweeping strategies for physics-informed neural networks (PINNs) and their temporal decompositions, arXiv Preprint arXiv: 2302.14227.
|
[63]
|
M. Penwarden, S. Zhe, A. Narayan and R. M. Kirby, Multifidelity modeling for physics-informed neural networks (PINNs), Journal of Computational Physics, 451 (2022), 110844.
doi: 10.1016/j.jcp.2021.110844.
|
[64]
|
S. Qadeer, A. Engel, A. Howard, A. Tsou, M. Vargas, P. Stinis and T. Chiang, Efficient kernel surrogates for neural network-based regression, arXiv Preprint arXiv: 2310.18612.
|
[65]
|
M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 378 (2019), 686-707.
doi: 10.1016/j.jcp.2018.10.045.
|
[66]
|
M. Raissi, A. Yazdani and G. E. Karniadakis, Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations, Science, 367 (2020), 1026-1030.
doi: 10.1126/science.aaw4741.
|
[67]
|
M. Ramezankhani, A. Nazemi, A. Narayan, H. Voggenreiter, M. Harandi, R. Seethaler and A. S. Milani, A data-driven multi-fidelity physics-informed learning framework for smart manufacturing: a composites processing case study, 2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS), IEEE, (2022), 1-7.
doi: 10.1109/ICPS51978.2022.9816983.
|
[68]
|
F. Regazzoni, S. Pagani, A. Cosenza, A. Lombardi and A. Quarteroni, A physics-informed multi-fidelity approach for the estimation of differential equations parameters in low-data or large-noise regimes, Rendiconti Lincei, 32 (2021), 437-470.
doi: 10.1007/s12210-021-01000-5.
|
[69]
|
F. M. Rohrhofer, S. Posch, C. Gößnitzer and B. Geiger, On the role of fixed points of dynamical systems in training physics-informed neural networks, Transactions on Machine Learning Research, 2023 (2023), 490.
|
[70]
|
D. Shu, Z. Li and A. B. Farimani, A physics-informed diffusion model for high-fidelity flow field reconstruction, Journal of Computational Physics, 478 (2023), 111972.
doi: 10.1016/j.jcp.2023.111972.
|
[71]
|
S. Wang and P. Perdikaris, Long-time integration of parametric evolution equations with physics-informed DeepONets, Journal of Computational Physics, 475 (2023), 111855.
doi: 10.1016/j.jcp.2022.111855.
|
[72]
|
S. Wang, S. Sankaran and P. Perdikaris, Respecting causality is all you need for training physics-informed neural networks, arXiv Preprint arXiv: 2203.07404.
|
[73]
|
S. Wang, H. Wang and P. Perdikaris, Learning the solution operator of parametric partial differential equations with physics-informed DeepONets, Science Advances, 7 (2021), eabi8605.
doi: 10.1126/sciadv.abi8605.
|
[74]
|
S. Wang, H. Wang and P. Perdikaris, Improved architectures and training algorithms for deep operator networks, Journal of Scientific Computing, 92 (2022), 35.
doi: 10.1007/s10915-022-01881-0.
|
[75]
|
S. Wang, X. Yu and P. Perdikaris, When and why PINNs fail to train: A neural tangent kernel perspective, Journal of Computational Physics, 449 (2022), 110768.
doi: 10.1016/j.jcp.2021.110768.
|
[76]
|
Y. Wang and C.-Y. Lai, Multi-stage neural networks: Function approximator of machine precision, arXiv Preprint arXiv: 2307.08934.
|
[77]
|
Z. Wang, T. Hong, H. Li and M. A. Piette, Predicting city-scale daily electricity consumption using data-driven models, Advances in Applied Energy, 2 (2021), 100025.
doi: 10.1016/j.adapen.2021.100025.
|
[78]
|
G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar and S. M. Benson, U-FNO—an enhanced Fourier neural operator-based deep-learning model for multiphase flow, Advances in Water Resources, 163 (2022), 104180.
doi: 10.1016/j.advwatres.2022.104180.
|
[79]
|
C. L. Wight and J. Zhao, Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks, arXiv Preprint arXiv: 2007.04542.
|
[80]
|
C. Wu, M. Zhu, Q. Tan, Y. Kartha and L. Lu, A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks, Computer Methods in Applied Mechanics and Engineering, 403 (2023), 115671.
doi: 10.1016/j.cma.2022.115671.
|
[81]
|
Z. Xiang, W. Peng, X. Liu and W. Yao, Self-adaptive loss balanced physics-informed neural networks, Neurocomputing, 496 (2022), 11-34.
doi: 10.1016/j.neucom.2022.05.015.
|
[82]
|
W. Xu, Y. Lu and L. Wang, Transfer learning enhanced DeepONet for long-time prediction of evolution equations, Proceedings of the AAAI Conference on Artificial Intelligence, 37 (2023), 10629-10636.
doi: 10.1609/aaai.v37i9.26262.
|
[83]
|
M. Yin, E. Zhang, Y. Yu and G. E. Karniadakis, Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems, Computer Methods in Applied Mechanics and Engineering, 402 (2022), 115027.
doi: 10.1016/j.cma.2022.115027.
|