February  2007, 1(1): 1-11. doi: 10.3934/ipi.2007.1.1

Microlocal sequential regularization in imaging

1. 

Case Western Reserve University, Department of Mathematics and Center for Modelling Integrated Metabolic Systems, 10900 Euclid Avenue, Cleveland, OH 44106, United States

2. 

Helsinki University of Technology, Department of Mathematics, P.O. Box 1100, FIN-02015 HUT, Finland

Received  September 2006 Published  January 2007

In this article, we consider imaging problems in which the data consist of noisy observations of the true image through a linear filter such as blurring, sparse sampling or tomographic projections. The image restoration problem is ill-posed and in order to obtain a meaningful result, the problem needs to be regularized or augmented by additional information. In this article, we consider Tikhonov regularization by a class of non-linear smoothness filters that are capable of detecting and restoring edges in the image. The regularization function is microlocal in the sense that it is sensitive to the location and the direction of the non-smoothness of the image. The implementation of the algorithm leads to a sequence of simple linear least squares problems, the penalty term being calculated as a direction-sensitive weighted finite difference approximation of the Laplacian. The algorithm is applied to two classical imaging problems, image zooming and limited angle tomography.
Citation: Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1
[1]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems & Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[2]

Tingting Wu, Yufei Yang, Huichao Jing. Two-step methods for image zooming using duality strategies. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 209-225. doi: 10.3934/naco.2014.4.209

[3]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

[4]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[5]

Alina Toma, Bruno Sixou, Françoise Peyrin. Iterative choice of the optimal regularization parameter in TV image restoration. Inverse Problems & Imaging, 2015, 9 (4) : 1171-1191. doi: 10.3934/ipi.2015.9.1171

[6]

Bartomeu Coll, Joan Duran, Catalina Sbert. Half-linear regularization for nonconvex image restoration models. Inverse Problems & Imaging, 2015, 9 (2) : 337-370. doi: 10.3934/ipi.2015.9.337

[7]

Wei Wan, Haiyang Huang, Jun Liu. Local block operators and TV regularization based image inpainting. Inverse Problems & Imaging, 2018, 12 (6) : 1389-1410. doi: 10.3934/ipi.2018058

[8]

Chengxiang Wang, Li Zeng, Wei Yu, Liwei Xu. Existence and convergence analysis of $\ell_{0}$ and $\ell_{2}$ regularizations for limited-angle CT reconstruction. Inverse Problems & Imaging, 2018, 12 (3) : 545-572. doi: 10.3934/ipi.2018024

[9]

Raymond H. Chan, Haixia Liang, Suhua Wei, Mila Nikolova, Xue-Cheng Tai. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 2015, 9 (1) : 55-77. doi: 10.3934/ipi.2015.9.55

[10]

Huan Han. A variational model with fractional-order regularization term arising in registration of diffusion tensor image. Inverse Problems & Imaging, 2018, 12 (6) : 1263-1291. doi: 10.3934/ipi.2018053

[11]

Victor Churchill, Rick Archibald, Anne Gelb. Edge-adaptive $ \ell_2 $ regularization image reconstruction from non-uniform Fourier data. Inverse Problems & Imaging, 2019, 13 (5) : 931-958. doi: 10.3934/ipi.2019042

[12]

Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks & Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211

[13]

Sarah Bailey Frick. Limited scope adic transformations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 269-285. doi: 10.3934/dcdss.2009.2.269

[14]

Len Margolin, Catherine Plesko. Discrete regularization. Evolution Equations & Control Theory, 2019, 8 (1) : 117-137. doi: 10.3934/eect.2019007

[15]

Weixia Zhao. The expansion of gas from a wedge with small angle into a vacuum. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2319-2330. doi: 10.3934/cpaa.2013.12.2319

[16]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[17]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[18]

Plamen Stefanov, Wenxiang Cong, Ge Wang. Modulated luminescence tomography. Inverse Problems & Imaging, 2015, 9 (2) : 579-589. doi: 10.3934/ipi.2015.9.579

[19]

Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044

[20]

Aili Wang, Yanni Xiao, Huaiping Zhu. Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences & Engineering, 2018, 15 (3) : 739-764. doi: 10.3934/mbe.2018033

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]