\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Editorial

Abstract Related Papers Cited by
  • The fields of inverse problems and imaging are new and flourishing branches of both pure and applied mathematics. In particular, these areas are concerned with recovering information about an object from indirect, incomplete or noisy observations and have become one of the most important and topical fields of modern applied mathematics.
        The modern study of inverse problems and imaging applies a wide range of geometric and analytic methods which in turn creates new connections to various fields of mathematics, ranging from geometry, microlocal analysis and control theory to mathematical physics, stochastics and numerical analysis. Research in inverse problems has shown that many results of pure mathematics are in fact crucial components of practical algorithms. For example,a theoretical understanding of the structures that ideal measurements should reveal, or of the non-uniqueness of solutions,can lead to a dramatic increase in the quality of imaging applications. On the other hand,inverse problems have also raised many new mathematical problems. For example, the invention of the inverse spectral method to solve the Korteweg-de Vries equation gave rise to the field of integrable systems and the mathematical theory of solitons.

    For more information please click the “Full Text” above.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(69) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return