May  2007, 1(2): 265-287. doi: 10.3934/ipi.2007.1.265

Automatic color palette


LTCI Télécom Paris, 46 rue Barrault 75013 Paris, France


MAP5, Univ. Paris 5, 45 rue des Saints-Pères, 75006 Paris, France


Universitat de les Illes Balears, Crta. de Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain


Univ. Illes Balears, Ctra. Valldemossa km 7,5 07122 Palma de Mallorca, Spain

Received  September 2006 Published  April 2007

We present a method for the automatic estimation of the minimum set of colors needed to describe an image. We call this minimal set ''color palette''. The proposed method combines the well-known K-Means clustering technique with a thorough analysis of the color information of the image. The initial set of cluster seeds used in K-Means is automatically inferred from this analysis. Color information is analyzed by studying the 1D histograms associated to the hue, saturation and intensity components of the image colors. In order to achieve a proper parsing of these 1D histograms a new histogram segmentation technique is proposed. The experimental results seem to endorse the capacity of the method to obtain the most significant colors in the image, even if they belong to small details in the scene. The obtained palette can be combined with a dictionary of color names in order to provide a qualitative image description.
Citation: J. Delon, A. Desolneux, Jose-Luis Lisani, A. B. Petro. Automatic color palette. Inverse Problems and Imaging, 2007, 1 (2) : 265-287. doi: 10.3934/ipi.2007.1.265

Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1233-1249. doi: 10.3934/dcdss.2019085


Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088


Carlangelo Liverani. On the work and vision of Dmitry Dolgopyat. Journal of Modern Dynamics, 2010, 4 (2) : 211-225. doi: 10.3934/jmd.2010.4.211


Daniel Roggen, Martin Wirz, Gerhard Tröster, Dirk Helbing. Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods. Networks and Heterogeneous Media, 2011, 6 (3) : 521-544. doi: 10.3934/nhm.2011.6.521


Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic and Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809


Luigi Ambrosio, Luis A. Caffarelli, A. Maugeri. Preface: A beautiful walk in the way of the understanding. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : i-vi. doi: 10.3934/dcds.2011.31.4i


Richard Boire. Understanding AI in a world of big data. Big Data & Information Analytics, 2018  doi: 10.3934/bdia.2018001


Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005


Yongbin Ou, Cun-Quan Zhang. A new multimembership clustering method. Journal of Industrial and Management Optimization, 2007, 3 (4) : 619-624. doi: 10.3934/jimo.2007.3.619


Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems and Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777


Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial and Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565


Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems and Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099


Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems and Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008


Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389


Angélique Perrillat-Mercerot, Alain Miranville, Nicolas Bourmeyster, Carole Guillevin, Mathieu Naudin, Rémy Guillevin. What mathematical models can or cannot do in glioma description and understanding. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2165-2193. doi: 10.3934/dcdss.2020184


Linhe Zhu, Wenshan Liu, Zhengdi Zhang. A theoretical approach to understanding rumor propagation dynamics in a spatially heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4059-4092. doi: 10.3934/dcdsb.2020274


Med Amine Laribi, Saïd Zeghloul. Redundancy understanding and theory for robotics teaching: Application on a human finger model. STEM Education, 2021, 1 (1) : 17-31. doi: 10.3934/steme.2021002


Elissar Nasreddine. Two-dimensional individual clustering model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307


Daniel Mckenzie, Steven Damelin. Power weighted shortest paths for clustering Euclidean data. Foundations of Data Science, 2019, 1 (3) : 307-327. doi: 10.3934/fods.2019014


Michael Herty, Lorenzo Pareschi, Giuseppe Visconti. Mean field models for large data–clustering problems. Networks and Heterogeneous Media, 2020, 15 (3) : 463-487. doi: 10.3934/nhm.2020027

2020 Impact Factor: 1.639


  • PDF downloads (88)
  • HTML views (0)
  • Cited by (9)

[Back to Top]