May  2007, 1(2): 265-287. doi: 10.3934/ipi.2007.1.265

Automatic color palette

1. 

LTCI Télécom Paris, 46 rue Barrault 75013 Paris, France

2. 

MAP5, Univ. Paris 5, 45 rue des Saints-Pères, 75006 Paris, France

3. 

Universitat de les Illes Balears, Crta. de Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain

4. 

Univ. Illes Balears, Ctra. Valldemossa km 7,5 07122 Palma de Mallorca, Spain

Received  September 2006 Published  April 2007

We present a method for the automatic estimation of the minimum set of colors needed to describe an image. We call this minimal set ''color palette''. The proposed method combines the well-known K-Means clustering technique with a thorough analysis of the color information of the image. The initial set of cluster seeds used in K-Means is automatically inferred from this analysis. Color information is analyzed by studying the 1D histograms associated to the hue, saturation and intensity components of the image colors. In order to achieve a proper parsing of these 1D histograms a new histogram segmentation technique is proposed. The experimental results seem to endorse the capacity of the method to obtain the most significant colors in the image, even if they belong to small details in the scene. The obtained palette can be combined with a dictionary of color names in order to provide a qualitative image description.
Citation: J. Delon, A. Desolneux, Jose-Luis Lisani, A. B. Petro. Automatic color palette. Inverse Problems & Imaging, 2007, 1 (2) : 265-287. doi: 10.3934/ipi.2007.1.265
[1]

Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1233-1249. doi: 10.3934/dcdss.2019085

[2]

Xiaohong Zhu, Zili Yang, Tabharit Zoubir. Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1296. doi: 10.3934/dcdss.2019088

[3]

Carlangelo Liverani. On the work and vision of Dmitry Dolgopyat. Journal of Modern Dynamics, 2010, 4 (2) : 211-225. doi: 10.3934/jmd.2010.4.211

[4]

Daniel Roggen, Martin Wirz, Gerhard Tröster, Dirk Helbing. Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods. Networks & Heterogeneous Media, 2011, 6 (3) : 521-544. doi: 10.3934/nhm.2011.6.521

[5]

Luigi Ambrosio, Luis A. Caffarelli, A. Maugeri. Preface: A beautiful walk in the way of the understanding. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : i-vi. doi: 10.3934/dcds.2011.31.4i

[6]

Richard Boire. Understanding AI in a world of big data. Big Data & Information Analytics, 2017, 2 (5) : 22-42. doi: 10.3934/bdia.2018001

[7]

Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic & Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809

[8]

Yongbin Ou, Cun-Quan Zhang. A new multimembership clustering method. Journal of Industrial & Management Optimization, 2007, 3 (4) : 619-624. doi: 10.3934/jimo.2007.3.619

[9]

Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems & Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777

[10]

Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial & Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565

[11]

Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems & Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099

[12]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems & Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[13]

Elissar Nasreddine. Two-dimensional individual clustering model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307

[14]

Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647

[15]

Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems & Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025

[16]

Jinyuan Zhang, Aimin Zhou, Guixu Zhang, Hu Zhang. A clustering based mate selection for evolutionary optimization. Big Data & Information Analytics, 2017, 2 (1) : 77-85. doi: 10.3934/bdia.2017010

[17]

Guojun Gan, Qiujun Lan, Shiyang Sima. Scalable clustering by truncated fuzzy $c$-means. Big Data & Information Analytics, 2016, 1 (2&3) : 247-259. doi: 10.3934/bdia.2016007

[18]

Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial & Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921

[19]

John P. Perdew, Adrienn Ruzsinszky. Understanding Thomas-Fermi-Like approximations: Averaging over oscillating occupied orbitals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5319-5325. doi: 10.3934/dcds.2013.33.5319

[20]

Pawan Lingras, Farhana Haider, Matt Triff. Fuzzy temporal meta-clustering of financial trading volatility patterns. Big Data & Information Analytics, 2017, 2 (5) : 1-20. doi: 10.3934/bdia.2017018

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (5)

[Back to Top]