• Previous Article
    Determining nonsmooth first order terms from partial boundary measurements
  • IPI Home
  • This Issue
  • Next Article
    Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography
May  2007, 1(2): 319-348. doi: 10.3934/ipi.2007.1.319

Automatic low baseline stereo in urban areas


Dept. de Tecnologia,Universitat Pompeu Fabra, 08003 Barcelona, Spain, Spain, Spain


Fac. de Ingeniería, Universidad de la República, 11300 Montevideo, Uruguay


CMLA,Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France


Centre National d'Etudes Spatiales (CNES), 31055 Toulouse, France

Received  December 2006 Published  April 2007

In this work we propose a new automatic methodology for computing accurate digital elevation models (DEMs) in urban environments from low baseline stereo pairs that shall be available in the future from a new kind of earth observation satellite. This setting makes both views of the scene very similar, thus avoiding occlusions and illumination changes, which are the main disadvantages of the commonly accepted wide-baseline configuration. There still remain two crucial technological challenges: (i) precisely estimating DEMs with strong discontinuities and (ii) providing a statistically proven result, automatically. The first one is solved here by a piecewise affine representation that is well adapted to man-made landscapes, whereas the application of computational Gestalt theory introduces reliability and automation. In fact this theory allows us to reduce the number of parameters to be adjusted, and to control the number of false detections. This leads to the selection of a suitable segmentation into affine regions (whenever possible) by a novel and completely automatic perceptual grouping method. It also allows us to discriminate e.g. vegetation-dominated regions, where such an affine model does not apply and a more classical correlation technique should be preferred. In addition we propose here an extension of the classical "quantized" Gestalt theory to continuous measurements, thus combining its reliability with the precision of variational robust estimation and fine interpolation methods that are necessary in the low baseline case. Such an extension is very general and will be useful for many other applications as well.
Citation: L. Igual, J. Preciozzi, L. Garrido, A. Almansa, V. Caselles, B. Rougé. Automatic low baseline stereo in urban areas. Inverse Problems & Imaging, 2007, 1 (2) : 319-348. doi: 10.3934/ipi.2007.1.319

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737


Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete & Continuous Dynamical Systems, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753


Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1


Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739


Tiantian Wu, Xiao-Song Yang. A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 5119-5129. doi: 10.3934/dcds.2016022


Sigurdur F. Hafstein, Christopher M. Kellett, Huijuan Li. Computing continuous and piecewise affine lyapunov functions for nonlinear systems. Journal of Computational Dynamics, 2015, 2 (2) : 227-246. doi: 10.3934/jcd.2015004


Carlangelo Liverani. On the work and vision of Dmitry Dolgopyat. Journal of Modern Dynamics, 2010, 4 (2) : 211-225. doi: 10.3934/jmd.2010.4.211


Michel Laurent, Arnaldo Nogueira. Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series. Journal of Modern Dynamics, 2021, 17: 33-63. doi: 10.3934/jmd.2021002


Vadim Azhmyakov, Alex Poznyak, Omar Gonzalez. On the robust control design for a class of nonlinearly affine control systems: The attractive ellipsoid approach. Journal of Industrial & Management Optimization, 2013, 9 (3) : 579-593. doi: 10.3934/jimo.2013.9.579


Jordi Gaset, Narciso Román-Roy. New multisymplectic approach to the Metric-Affine (Einstein-Palatini) action for gravity. Journal of Geometric Mechanics, 2019, 11 (3) : 361-396. doi: 10.3934/jgm.2019019


Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic & Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809


Hui Xu, Guangbin Cai, Xiaogang Yang, Erliang Yao, Xiaofeng Li. Stereo visual odometry based on dynamic and static features division. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021059


Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329


Qinglan Xia. An application of optimal transport paths to urban transport networks. Conference Publications, 2005, 2005 (Special) : 904-910. doi: 10.3934/proc.2005.2005.904


Mauro Garavello, Benedetto Piccoli. On fluido-dynamic models for urban traffic. Networks & Heterogeneous Media, 2009, 4 (1) : 107-126. doi: 10.3934/nhm.2009.4.107


Mary Luz Mouronte, Rosa María Benito. Structural properties of urban bus and subway networks of Madrid. Networks & Heterogeneous Media, 2012, 7 (3) : 415-428. doi: 10.3934/nhm.2012.7.415


Ruiqi Li, Yifan Chen, Xiang Zhao, Yanli Hu, Weidong Xiao. Time series based urban air quality predication. Big Data & Information Analytics, 2016, 1 (2&3) : 171-183. doi: 10.3934/bdia.2016003


Lianju Sun, Ziyou Gao, Yiju Wang. A Stackelberg game management model of the urban public transport. Journal of Industrial & Management Optimization, 2012, 8 (2) : 507-520. doi: 10.3934/jimo.2012.8.507


Yanming Ge. Analysis of airline seat control with region factor. Journal of Industrial & Management Optimization, 2012, 8 (2) : 363-378. doi: 10.3934/jimo.2012.8.363


Yannan Chen, Jingya Chang. A trust region algorithm for computing extreme eigenvalues of tensors. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 475-485. doi: 10.3934/naco.2020046

2019 Impact Factor: 1.373


  • PDF downloads (56)
  • HTML views (0)
  • Cited by (14)

[Back to Top]